Skip to content

abhuse/cyclic-cosine-decay

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch Cyclic Cosine Decay Learning Rate Scheduler

A learning rate scheduler for Pytorch. This implements 2 modes:

Diagram

Parameters

  • optimizer (Optimizer) - Wrapped optimizer.
  • init_decay_epochs (int) - Number of initial decay epochs.
  • min_decay_lr (float or iterable of floats) - Learning rate at the end of decay.
  • restart_interval (int) - Restart interval for fixed cycles. Set to None to disable cycles. Default: None.
  • restart_interval_multiplier (float) - Multiplication coefficient for geometrically increasing cycles. Default: None.
  • restart_lr (float or iterable of floats) - Learning rate when cycle restarts. If None, optimizer's learning rate will be used. Default: None.
  • warmup_epochs (int) - Number of warmup epochs. Set to None to disable warmup. Default: None.
  • warmup_start_lr (float or iterable of floats) - Learning rate at the beginning of warmup. Must be set if warmup_epochs is not None. Default: None.
  • last_epoch (int) - The index of the last epoch. This parameter is used when resuming a training job. Default: -1.
  • verbose (bool) - If True, prints a message to stdout for each update. Default: False.

The learning rates are decayed for init_decay_epochs from initial values passed to optimizer to the min_decay_lr using cosine function. The cycle is then restarted:

  • If restart_interval_multiplier is provided, the cycle interval at each restart is multiplied by given parameter, this corresponds to [Loshchilov & Hutter 2017] implementation.
  • If restart_interval_multiplier is None, all subsequent cycles have fixed intervals, as in [Athiwaratkun et al 2019].

If restart_interval is None, learning rate will remain to be min_decay_lr untill end of training.

min_decay_lr, restart_lr and warmup_start_lr can be float or iterable of floats in case multiple parameter groups are provided to the optimizer. In latter case, len(min_decay_lr), len(restart_lr) and len(warmup_start_lr) must be equal to len(optimizer.param_groups).

Usage examples

Check out example.ipynb

Requirements

  • Pytorch 1.6.0+

About

Pytorch cyclic cosine decay learning rate scheduler

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published