Skip to content

GroCo: Ground Constraint for Metric Self-Supervised Monocular Depth

License

Notifications You must be signed in to change notification settings

Visual-Behavior/GroCo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GroCo: Ground Constraint for Metric Self-Supervised Monocular Depth

This repository contains the inference code for the GroCo paper (ECCV24).

Example

The model can be run on an example using the notebook example.ipynb.

Weights and Benchmark

Model and annotations are provided in this google drive

Weights should be placed in a created weights folder and annotations in splits/eigen_benchmark/gt_depths.npz.

Evaluation

Evaluation on KITTI can be run using the following command:

python evaluate_depth.py

Camera Rotations can be added with the --rotations flag, with the format [Pitch, Yaw, Roll]. Rotations are limited to 5 degrees for pitch and roll and 15 degrees for yaw to not create black borders.

python evaluate_depth.py --rotations 0 0 5

Dataset preparation

Download the KITTI dataset. Data structure should be as follows:

Kitti
├── 2011_09_26
│   ├── 2011_09_26_drive_0001_sync
│   │   ├── image_02
│   │   │   └── data
│   │   ├── image_03
│   │   │   └── data
│   │   ├── oxts
│   │   │   └── data
│   │   └── velodyne_points
│   │       └── data
    ...
└── 2011_09_28
    ...
└── 2011_09_29
    ...
└── 2011_09_30
    ...
└── 2011_10_03

About

GroCo: Ground Constraint for Metric Self-Supervised Monocular Depth

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published