Skip to content

Commit

Permalink
feat: 文档调整 (#432)
Browse files Browse the repository at this point in the history
* feat: 文档调整

* feat: 图片调整
  • Loading branch information
liukaiming-alipay authored Dec 20, 2024
1 parent ed4e8a6 commit 7ecee2a
Show file tree
Hide file tree
Showing 3 changed files with 45 additions and 29 deletions.
File renamed without changes.
31 changes: 20 additions & 11 deletions docs/docs-cn/source/3.quick_start/1.quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,19 @@ cd tugraph-analytics/
```

## 本地运行流图作业

下面介绍如何在本地环境运行一个实时环路查找的图计算作业。

### Demo1 从本地文件读取数据[1.quick_start_copy.md](..%2F..%2F..%2Fdocs-en%2Fsource%2F3.quick_start%2F1.quick_start_copy.md)
### Demo1 从本地文件读取数据[1.quick_start_copy.md]

1. 直接运行脚本即可:

```shell
bin/gql_submit.sh --gql geaflow/geaflow-examples/gql/loop_detection_file_demo.sql
```

其中 loop_detection_file_demo.sql 是一段实时查询图中所有四度环路的 DSL 计算作业,其内容如下:

```sql
set geaflow.dsl.window.size = 1;
set geaflow.dsl.ignore.exception = true;
Expand Down Expand Up @@ -102,27 +106,31 @@ INSERT INTO tbl_result
RETURN a.id as a_id, b.id as b_id, c.id as c_id, d.id as d_id, a.id as a1_id
);
```
该 DSL 会从项目中的resource文件 **demo_job_data.txt** 中读取点边数据,进行构图,然后计算图中所有的 4 度的环路, 并将环路上的点 id 输出到

该 DSL 会从项目中的 resource 文件 **demo_job_data.txt** 中读取点边数据,进行构图,然后计算图中所有的 4 度的环路, 并将环路上的点 id 输出到
/tmp/geaflow/demo_job_result,
用户也可通过修改 `geaflow.dsl.file.path` 参数自定义输出路径。

2. 输出结果如下

```
2,3,4,1,2
4,1,2,3,4
3,4,1,2,3
1,2,3,4,1
```

### Demo2 交互式使用socket读取数据
### Demo2 交互式使用 socket 读取数据

用户也可自己在命令台输入数据,实时进行构图。

1. 运行脚本:

```shell
bin/gql_submit.sh --gql geaflow/geaflow-examples/gql/loop_detection_socket_demo.sql
```

loop_detection_socket_demo.sql 主要区别是source表是通过socket进行读取
loop_detection_socket_demo.sql 主要区别是 source 表是通过 socket 进行读取

```sql
CREATE TABLE IF NOT EXISTS tbl_source (
Expand Down Expand Up @@ -198,26 +206,27 @@ socket 服务启动后,控制台显示如下信息:

![ide_socket_server_more](../../../static/img/quick_start/ide_socket_server_more.png)

4. 访问可视化dashboard页面
4. 访问可视化 dashboard 页面

本地模式的进程会占用本地的8090和8088端口,附带一个可视化页面。
本地模式的进程会占用本地的 8090 和 8088 端口,附带一个可视化页面。

在浏览器中输入 http://localhost:8090 即可访问前端页面。

![dashboard_overview](../../../static/img/dashboard/dashboard_overview.png)

关于更多dashboard相关的内容,请参考文档:
关于更多 dashboard 相关的内容,请参考文档:
[文档](../7.deploy/3.dashboard.md)

## GeaFlow Console 快速上手

GeaFlow Console 是 GeaFlow 提供的图计算研发平台,我们将介绍如何在 Docker 容器里面启动 GeaFlow Console 平台,提交流图计算作业。文档地址:
[文档](2.quick_start_docker.md)

## GeaFlow Kubernetes Operator快速上手
Geaflow Kubernetes Operator是一个可以快速将Geaflow应用部署到kubernetes集群中的部署工具。
我们将介绍如何通过Helm安装geaflow-kubernetes-operator,通过yaml文件快速提交geaflow作业,
并访问operator的dashboard页面查看集群下的作业状态。文档地址:
## GeaFlow Kubernetes Operator 快速上手

Geaflow Kubernetes Operator 是一个可以快速将 Geaflow 应用部署到 kubernetes 集群中的部署工具。
我们将介绍如何通过 Helm 安装 geaflow-kubernetes-operator,通过 yaml 文件快速提交 geaflow 作业,
并访问 operator 的 dashboard 页面查看集群下的作业状态。文档地址:
[文档](../7.deploy/2.quick_start_operator.md)

## 使用 G6VP 进行流图计算作业可视化
Expand Down
43 changes: 25 additions & 18 deletions docs/docs-en/source/7.deploy/5.install_llm.md
Original file line number Diff line number Diff line change
@@ -1,37 +1,42 @@
# LLM Local Deployment

The users have the capability to locally deploy extensive models as a service. The complete process, encompassing downloading pre-trained models, deploying them as a service, and debugging, is described in the following steps. It is essential for the user's machine to have Docker installed and be granted access to the repository containing these large models.

## Step 1: Download the Model File
The pre-trained large model file has been uploaded to the [Hugging Face repository](https://huggingface.co/tugraph/CodeLlama-7b-GQL-hf). Please proceed with downloading and locally unzipping the model file.
![hugging](../../static/img/llm_hugging_face.png)

## Step 2: Prepare the Docker Container Environment
## Step 1: Download the Model File

The pre-trained large model file has been uploaded to the [Hugging Face repository](https://huggingface.co/tugraph/CodeLlama-7b-GQL-hf). Please proceed with downloading and locally unzipping the model file.
![hugging](../../../static/img/llm_hugging_face.png)

## Step 2: Prepare the Docker Container Environment

1. Run the following command on the terminal to download the Docker image required for model servicing:

```
docker pull tugraph/llam_infer_service:0.0.1
// Use the following command to verify that the image was successfully downloaded
docker images
```

2. Run the following command to start the Docker container:

```
docker run -it --name ${Container name} -v ${Local model path}:${Container model path} -p ${Local port}:${Container service port} -d ${Image name}
docker run -it --name ${Container name} -v ${Local model path}:${Container model path} -p ${Local port}:${Container service port} -d ${Image name}
// Such as
docker run -it --name my-model-container -v /home/huggingface:/opt/huggingface -p 8000:8000 -d llama_inference_server:v1
// Check whether the container is running properly
docker ps
docker ps
```

Here, we map the container's port 8000 to the local machine's port 8000, mount the directory where the local model (/home/huggingface) resides to the container's path (/opt/huggingface), and set the container name to my-model-container.

## Step 3: Model Service Deployment

1. Model transformation

```
// Enter the container you just created
docker exec -it ${container_id} bash
Expand All @@ -40,23 +45,26 @@ docker exec -it ${container_id} bash
cd /opt/llama_cpp
python3 ./convert.py ${Container model path}
```

When the execution is complete, a file with the prefix ggml-model is generated under the container model path.
![undefined](../../static/img/llm_ggml_model.png)
![undefined](../../../static/img/llm_ggml_model.png)

2. Model quantization (optional)
Take the llam2-7B model as an example: By default, the accuracy of the model converted by convert.py is F16 and the model size is 13.0GB. If the current machine resources cannot satisfy such a large model inference, the converted model can be further quantized by./quantize.
Take the llam2-7B model as an example: By default, the accuracy of the model converted by convert.py is F16 and the model size is 13.0GB. If the current machine resources cannot satisfy such a large model inference, the converted model can be further quantized by./quantize.

```
// As shown below, q4_0 quantizes the original model to int4 and compresses the model size to 3.5GB
cd /opt/llama_cpp
./quantize ${Default generated F16 model path} ${Quantized model path} q4_0
```

The following are reference indicators such as the size and reasoning speed of the quantized model:
![undefined](../../static/img/llm_quantization_table.png)
![undefined](../../../static/img/llm_quantization_table.png)

3. Model servicing
Run the following command to deploy the above generated model as a service, and specify the address and port of the service binding through the parameters:
Run the following command to deploy the above generated model as a service, and specify the address and port of the service binding through the parameters:

```
// ./server -h. You can view parameter details
// ${ggml-model...file} The file name prefixes the generated ggml-model
Expand All @@ -69,16 +77,15 @@ cd /opt/llama_cpp
```

4. Debugging service
Send an http request to the service address, where "prompt" is the query statement and "content" is the inference result.
Send an http request to the service address, where "prompt" is the query statement and "content" is the inference result.

```
curl --request POST \
--url http://127.0.0.1:8000/completion \
--header "Content-Type: application/json" \
--data '{"prompt": "请返回小红的10个年龄大于20的朋友","n_predict": 128}'
```

Debugging service
The following is the model inference result after service deployment:
![undefined](../../static/img/llm_chat_result.png)


![undefined](../../../static/img/llm_chat_result.png)

0 comments on commit 7ecee2a

Please sign in to comment.