Skip to content

Results

Thanos Masouris edited this page Sep 5, 2022 · 2 revisions

The results for the Default and Accuracy-aware quantization algorithms presented below are obtained using the defaultQuantization.ipynb and accuracyQuantization.ipynb notebooks, respectively. The quantized models can be found here.

Default Quantization

The results of the default quantization method are presented on Table 1. The accuracy is calculated on the official CIFAR-10 test set.

Model Calibration Dataset Accuracy FPS
ResNet20 (PyTorch) - 0.926 186.7
ResNet20 (IR) - 0.926 1277.52
ResNet20 (8-bit quantized) Fractal 0.9158 1590.19
ResNet20 (8-bit quantized) CIFAR-10 0.9234 1565.45
ResNet20 (8-bit quantized) FakeCIFAR10 (StyleGAN2-ADA) 0.922 1541.86
ResNet20 (8-bit quantized) FakeCIFAR10 (DiStyleGAN) 0.9217 1602.92
VGG16_bn (PyTorch) - 0.9416 54.85
VGG16_bn (IR) - 0.9416 246.29
VGG16_bn (8-bit quantized) Fractal 0.9351 654.41
VGG16_bn (8-bit quantized) CIFAR-10 0.9411 680.46
VGG16_bn (8-bit quantized) FakeCIFAR10 (StyleGAN2-ADA) 0.9401 604.65
VGG16_bn (8-bit quantized) FakeCIFAR10 (DiStyleGAN) 0.9409 623.14
MobileNetV2_x1_4 (PyTorch) - 0.9421 37.5
MobileNetV2_x1_4 (IR) - 0.9421 130.38
MobileNetV2_x1_4 (8-bit quantized) Fractal 0.937 478.11
MobileNetV2_x1_4 (8-bit quantized) CIFAR-10 0.9414 425.89
MobileNetV2_x1_4 (8-bit quantized) FakeCIFAR10 (StyleGAN2-ADA) 0.9416 447.95
MobileNetV2_x1_4 (8-bit quantized) FakeCIFAR10 (DiStyleGAN) 0.9406 483.06
ShuffleNetv2_x2_0 (PyTorch) - 0.9398 43.14
ShuffleNetv2_x2_0 (IR) - 0.9398 228.89
ShuffleNetv2_x2_0 (8-bit quantized) Fractal 0.1202 442.75
ShuffleNetv2_x2_0 (8-bit quantized) CIFAR-10 0.928 404.5
ShuffleNetv2_x2_0 (8-bit quantized) FakeCIFAR10 (StyleGAN2-ADA) 0.8695 417.81
ShuffleNetv2_x2_0 (8-bit quantized) FakeCIFAR10 (DiStyleGAN) 0.9258 443.99
RepVGG_a2 (PyTorch) - 0.9527 11.43
RepVGG_a2 (IR) - 0.9527 56.77
RepVGG_a2 (8-bit quantized) Fractal 0.5551 154.89
RepVGG_a2 (8-bit quantized) CIFAR-10 0.5531 136.29
RepVGG_a2 (8-bit quantized) FakeCIFAR10 (StyleGAN2-ADA) 0.5586 148.98
RepVGG_a2 (8-bit quantized) FakeCIFAR10 (DiStyleGAN) 0.5445 135.94

Table 1: Default Quantization results

Accuracy-control Quantization

The results of the accuracy-control quantization method are presented on Table 2. We experimented with the two models, namely ShuffleNetV2 and RepVGG, that showcased accuracy degradation when we used the Default Quantization method. The accuracy is again calculated on the official  CIFAR-10 test set. The inference speeds (FPS) are not reported, since they are similar to the ones presented on Table 1 for the corresponding models.

Model \ Calibration Dataset Fractal CIFAR-10 StyleGAN2-ADA DiStyleGAN
ShuffleNetv2_x2_0 0.1202 0.928 0.9343 0.9388
RepVGG_a2 0.551 0.9484 0.9481 0.9475

Table 2: Accuracy-control Quantization results (measure: accuracy)