Skip to content

python implementation of efficient convolution operators for tracking

License

Notifications You must be signed in to change notification settings

StrangerZhang/pyECO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python Implementation of ECO

Run demo

cd pyECO/eco/features/

python setup.py build_ext --inplace

pip install numpy scipy python-opencv glob pandas pillow

# if you want to use deep feature 
pip install mxnet-cu80(or 90 according to your cuda version)
pip install cupy-cu80(or 90 according to your cuda version)

cd pyECO/

python bin/demo_ECO_hc.py --video_dir path/to/video

Convert to deep feature version

uncomment eco/config/config.py at line5 and comment eco/config/config.py at line 6

Benchmark results

OTB100

Tracker AUC Speed
ECO_deep 68.7(vs 69.1) 6~8fps on GTX 1080 Ti
ECO_hc 65.2(vs 65.0) 40~60fps on Intel i5

Visualization Results

Note

we use ResNet50 feature instead of the original imagenet-vgg-m-2048

code tested on mac os 10.13 and python 3.6, ubuntu 16.04 and python 3.6

Reference

[1] Danelljan, Martin and Bhat, Goutam and Shahbaz Khan, Fahad and Felsberg, Michael ​ ECO: Efficient Convolution Operators for Tracking ​ In Conference on Computer Vision and Pattern Recognition (CVPR), 2017

About

python implementation of efficient convolution operators for tracking

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published