Skip to content

Commit

Permalink
Merge pull request #1024 from PCMDI/405_sic_ao
Browse files Browse the repository at this point in the history
Sea ice metrics beta
  • Loading branch information
lee1043 authored Jan 26, 2024
2 parents 2b27f16 + 8311c81 commit 43dab6b
Show file tree
Hide file tree
Showing 13 changed files with 4,401 additions and 0 deletions.
1 change: 1 addition & 0 deletions conda-env/dev.yml
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ dependencies:
- rasterio=1.3.6
- shapely=2.0.1
- numdifftools
- nc-time-axis
# ==================
# Testing
# ==================
Expand Down
2,766 changes: 2,766 additions & 0 deletions doc/jupyter/Demo/Demo_9_seaIceExtent_ivanova.ipynb

Large diffs are not rendered by default.

61 changes: 61 additions & 0 deletions doc/jupyter/Demo/sea_ice_line_plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
import cftime
import matplotlib.pyplot as plt
import xarray as xr
import xcdat as xc

ds = xc.open_mfdataset(
"/p/user_pub/pmp/demo/sea-ice/links_siconc/E3SM-1-0/historical/r1i2p2f1/siconc/siconc_SImon_E3SM-1-0_historical_r1i2p2f1_*_*.nc"
)
area = xc.open_dataset(
"/p/user_pub/pmp/demo/sea-ice/links_area/E3SM-1-0/areacello_Ofx_E3SM-1-0_historical_r1i1p1f1_gr.nc"
)

arctic = (ds.where(ds.lat > 0) * 1e-2 * area.areacello * 1e-6).sum(("lat", "lon"))

f_os_n = "/p/user_pub/pmp/demo/sea-ice/EUMETSAT/OSI-SAF-450-a-3-0/v20231201/ice_conc_nh_ease2-250_cdr-v3p0_198801-202012.nc"
obs = xc.open_dataset(f_os_n)
obs_area = 625
obs_arctic = (obs.ice_conc.where(obs.lat > 0) * 1e-2 * obs_area).sum(("xc", "yc"))

# Time series plot
arctic.siconc.sel({"time": slice("1981-01-01", "2010-12-31")}).plot(label="E3SM-1-0")
obs_arctic.plot(label="OSI-SAF")
plt.title("Arctic monthly sea ice extent")
plt.ylabel("Extent (km${^2}$)")
plt.xlabel("time")
plt.xlim(
[
cftime.DatetimeNoLeap(1981, 1, 16, 12, 0, 0, 0, has_year_zero=True),
cftime.DatetimeNoLeap(2010, 12, 16, 12, 0, 0, 0, has_year_zero=True),
]
)
plt.legend(loc="upper right", fontsize=9)
plt.savefig("Arctic_tseries.png")
plt.close()

# Climatology plot
arctic_ds = xr.Dataset(
data_vars={"siconc": arctic.siconc, "time_bnds": ds.time_bnds},
coords={"time": ds.time},
)
arctic_clim = arctic_ds.sel(
{"time": slice("1981-01-01", "2010-12-31")}
).temporal.climatology("siconc", freq="month")
arctic_clim["time"] = [x for x in range(1, 13)]

obs_arc_ds = xr.Dataset(
data_vars={"ice_conc": obs_arctic, "time_bnds": obs.time_bnds},
coords={"time": obs.time},
)
obs_clim = obs_arc_ds.temporal.climatology("ice_conc", freq="month")
obs_clim["time"] = [x for x in range(1, 13)]

arctic_clim.siconc.plot(label="E3SM-1-0")
obs_clim.ice_conc.plot(label="OSI-SAF")
plt.title("Arctic climatological sea ice extent\n1981-2010")
plt.xlabel("month")
plt.ylabel("Extent (km${^2}$)")
plt.xlim([1, 12])
plt.legend(loc="upper right", fontsize=9)
plt.savefig("Arctic_clim.png")
plt.close()
52 changes: 52 additions & 0 deletions doc/jupyter/Demo/sea_ice_param.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Sea ice metrics parameter file

# List of models to include in analysis
test_data_set = [
"E3SM-1-0",
]

# realization can be a single realization, a list of realizations, or "*" for all realizations
realization = "r1i2p2f1"

# test_data_path is a template for the model data parent directory
test_data_path = "/p/user_pub/pmp/demo/sea-ice/links_siconc/%(model)/historical/%(realization)/siconc/"

# filename_template is a template for the model data file name
# combine it with test_data_path to get complete data path
filename_template = "siconc_SImon_%(model)_historical_%(realization)_*_*.nc"

# The name of the sea ice variable in the model data
var = "siconc"

# Start and end years for model data
msyear = 1981
meyear = 2010

# Factor for adjusting model data to decimal rather than percent units
ModUnitsAdjust = (True, "multiply", 1e-2)

# Template for the grid area file
area_template = "/p/user_pub/pmp/demo/sea-ice/links_area/%(model)/*.nc"

# Area variable name; likely 'areacello' or 'areacella' for CMIP6
area_var = "areacello"

# Factor to convert area units to km-2
AreaUnitsAdjust = (True, "multiply", 1e-6)

# Directory for writing outputs
case_id = "ex1"
metrics_output_path = "sea_ice_demo/%(case_id)/"

# Settings for the observational data
reference_data_path_nh = "/p/user_pub/pmp/demo/sea-ice/EUMETSAT/OSI-SAF-450-a-3-0/v20231201/ice_conc_nh_ease2-250_cdr-v3p0_198801-202012.nc"
reference_data_path_sh = "/p/user_pub/pmp/demo/sea-ice/EUMETSAT/OSI-SAF-450-a-3-0/v20231201/ice_conc_sh_ease2-250_cdr-v3p0_198801-202012.nc"
ObsUnitsAdjust = (True, "multiply", 1e-2)
reference_data_set = "OSI-SAF"
osyear = 1988
oeyear = 2020
obs_var = "ice_conc"
ObsAreaUnitsAdjust = (False, 0, 0)
obs_area_template = None
obs_area_var = None
obs_cell_area = 625 # km 2
156 changes: 156 additions & 0 deletions doc/jupyter/Demo/sea_ice_sector_plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
import cartopy.crs as ccrs
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import numpy as np
import regionmask
import xcdat as xc

from pcmdi_metrics.utils import create_land_sea_mask

# ----------
# Arctic
# ----------
print("Creating Arctic map")
# Load and process data
f_os_n = "/p/user_pub/pmp/demo/sea-ice/EUMETSAT/OSI-SAF-450-a-3-0/v20231201/ice_conc_nh_ease2-250_cdr-v3p0_198801-202012.nc"
obs = xc.open_dataset(f_os_n)
obs = obs.mean("time")
mask = create_land_sea_mask(obs, lon_key="lon", lat_key="lat")
obs["ice_conc"] = obs["ice_conc"].where(mask < 1)
ds = obs.assign_coords(
xc=obs["lon"], yc=obs["lat"]
) # Assign these variables to Coordinates, which were originally data variables

# Set up regions
region_NA = np.array([[-120, 45], [-120, 80], [90, 80], [90, 45]])
region_NP = np.array([[90, 45], [90, 65], [240, 65], [240, 45]])
names = ["North_Atlantic", "North_Pacific"]
abbrevs = ["NA", "NP"]
arctic_regions = regionmask.Regions(
[region_NA, region_NP], names=names, abbrevs=abbrevs, name="arctic"
)

# Do plotting
cmap = colors.LinearSegmentedColormap.from_list("", [[0, 85 / 255, 182 / 255], "white"])
proj = ccrs.NorthPolarStereo()
ax = plt.subplot(111, projection=proj)
ax.set_global()
ds.ice_conc.plot.pcolormesh(
ax=ax,
x="xc",
y="yc",
transform=ccrs.PlateCarree(),
cmap=cmap,
cbar_kwargs={"label": "ice concentration (%)"},
)
arctic_regions.plot_regions(
ax=ax,
add_label=False,
label="abbrev",
line_kws={"color": [0.2, 0.2, 0.25], "linewidth": 3},
)
ax.set_extent([-180, 180, 43, 90], ccrs.PlateCarree())
ax.coastlines(color=[0.3, 0.3, 0.3])
plt.annotate(
"North Atlantic",
(0.5, 0.2),
xycoords="axes fraction",
horizontalalignment="right",
verticalalignment="bottom",
color="white",
)
plt.annotate(
"North Pacific",
(0.65, 0.88),
xycoords="axes fraction",
horizontalalignment="right",
verticalalignment="bottom",
color="white",
)
plt.annotate(
"Central\nArctic ",
(0.56, 0.56),
xycoords="axes fraction",
horizontalalignment="right",
verticalalignment="bottom",
)
ax.set_facecolor([0.55, 0.55, 0.6])
plt.title("Arctic regions with mean\nOSI-SAF ice concentration\n1988-2020")
plt.savefig("Arctic_regions.png")
plt.close()
obs.close()

# ----------
# Antarctic
# ----------
print("Creating Antarctic map")
# Load and process data
f_os_s = "/p/user_pub/pmp/demo/sea-ice/EUMETSAT/OSI-SAF-450-a-3-0/v20231201/ice_conc_sh_ease2-250_cdr-v3p0_198801-202012.nc"
obs = xc.open_dataset(f_os_s)
obs = obs.mean("time")
mask = create_land_sea_mask(obs, lon_key="lon", lat_key="lat")
obs["ice_conc"] = obs["ice_conc"].where(mask < 1)
ds = obs.assign_coords(
xc=obs["lon"], yc=obs["lat"]
) # Assign these variables to Coordinates, which were originally data variables

# Set up regions
region_IO = np.array([[20, -90], [90, -90], [90, -55], [20, -55]])
region_SA = np.array([[20, -90], [-60, -90], [-60, -55], [20, -55]])
region_SP = np.array([[90, -90], [300, -90], [300, -55], [90, -55]])
names = ["Indian Ocean", "South Atlantic", "South Pacific"]
abbrevs = ["IO", "SA", "SP"]
arctic_regions = regionmask.Regions(
[region_IO, region_SA, region_SP], names=names, abbrevs=abbrevs, name="antarctic"
)

# Do plotting
cmap = colors.LinearSegmentedColormap.from_list("", [[0, 85 / 255, 182 / 255], "white"])
proj = ccrs.SouthPolarStereo()
ax = plt.subplot(111, projection=proj)
ax.set_global()
ds.ice_conc.plot.pcolormesh(
ax=ax,
x="xc",
y="yc",
transform=ccrs.PlateCarree(),
cmap=cmap,
cbar_kwargs={"label": "ice concentration (%)"},
)
arctic_regions.plot_regions(
ax=ax,
add_label=False,
label="abbrev",
line_kws={"color": [0.2, 0.2, 0.25], "linewidth": 3},
)
ax.set_extent([-180, 180, -53, -90], ccrs.PlateCarree())
ax.coastlines(color=[0.3, 0.3, 0.3])
plt.annotate(
"South Pacific",
(0.50, 0.2),
xycoords="axes fraction",
horizontalalignment="right",
verticalalignment="bottom",
color="black",
)
plt.annotate(
"Indian\nOcean",
(0.89, 0.66),
xycoords="axes fraction",
horizontalalignment="right",
verticalalignment="bottom",
color="black",
)
plt.annotate(
"South Atlantic",
(0.54, 0.82),
xycoords="axes fraction",
horizontalalignment="right",
verticalalignment="bottom",
color="black",
)
ax.set_facecolor([0.55, 0.55, 0.6])
plt.title("Antarctic regions with mean\nOSI-SAF ice concentration\n1988-2020")
plt.savefig("Antarctic_regions.png")
plt.close()
obs.close()
61 changes: 61 additions & 0 deletions pcmdi_metrics/sea_ice/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# Sea Ice

## Summary

## Demo

* Link to notebook

## Inputs

### Sectors

## Run

The PMP sea ice metrics can be controlled via an input parameter file, the command line, or both. With the command line only it is executed via:

```
sea_ice_driver.py -p parameter_file.py
```

or as a combination of an input parameter file and the command line, e.g.:

```
sea_ice_driver.py -p parameter_file.py --msyear 1991 --meyear 2020
```

## Outputs

The driver produces a JSON file containing mean square error metrics for all input models and realizations relative to the reference data set. It also produces a bar chart displaying these metrics.

## Parameters

* **case_id**: Save JSON and figure files into this subdirectory so that results from multiple tests can be readily organized.
* **test_data_set**: List of model names.
* **realization**: List of realizations.
* **test_data_path**: File path to directory containing model/test data.
* **filename_template**: File name template for test data, e.g., "CMIP5.historical.%(model_version).r1i1p1.mon.%(variable).19810-200512.AC.v2019022512.nc" where "model_version" and "variable" will be analyzed for each of the entries in test_data_set and vars.
* **var**: Name of model sea ice variable
* **msyear**: Start year for test data set.
* **meyear**: End year for test data set.
* **ModUnitsAdjust**: Factor to convert model sea ice data to fraction of 1. Uses format (flag (bool), operation (str), value (float)). Operation can be "add", "subtract", "multiply", or "divide". For example, use (True, 'multiply', 1e-2) to convert from percent concentration to decimal concentration.
* **area_template**: File path of model grid area data.
* **area_var**: Name of model area variable, e.g. "areacello"
* **AreaUnitsAdjust**: Factor to convert model area data to units of km2. Uses format (flag (bool), operation (str), value (float)). Operation can be "add", "subtract", "multiply", or "divide". For example, use (True, 'multiply', 1e6) to convert from m2 to km2.
* **metrics_output_path**: Directory path for metrics output in JSON files, e.g., '~/demo_data/PMP_metrics/'. The %(case_id) variable can be used here. If exists, should be empty before run.
* **reference_data_path_nh**: The reference data file path for the northern hemisphere. If data is global, provide same path for nh and sh.
* **reference_data_path_sh**: The reference data file path for the southern hemisphere. If data is global, provide same path for nh and sh.
* **ObsUnitsAdjust**: Factor to convert reference sea ice data to fraction of 1. Uses format (flag (bool), operation (str), value (float)). Operation can be "add", "subtract", "multiply", or "divide". For example, use (True, 'multiply', 1e-2) to convert from percent concentration to decimal concentration.
* **reference_data_set**: A short name describing the reference dataset, e.g. "OSI-SAF".
* **osyear**: Start year for reference data set.
* **oeyear**: End year for reference data set.
* **obs_var**: Name of reference sea ice variable.
* **ObsAreaUnitsAdjust**: Factor to convert model area data to units of km2. Uses format (flag (bool), operation (str), value (float)). Operation can be "add", "subtract", "multiply", or "divide". For example, use (True, 'multiply', 1e6) to convert from m2 to km2.
* **obs_area_template**: File path of grid area data. If unavailalbe, skip and use "obs_cell_area".
* **obs_area_var**: Name of reference area variable, if available. If unavailable, skip and use "obs_cell_area".
* **obs_cell_area**: For equal area grids, the area of a single grid cell in units of km2.


## Reference

Ivanova, D. P., P. J. Gleckler, K. E. Taylor, P. J. Durack, and K. D. Marvel, 2016: Moving beyond the Total Sea Ice Extent in Gauging Model Biases. J. Climate, 29, 8965–8987, https://doi.org/10.1175/JCLI-D-16-0026.1.
Empty file.
1 change: 1 addition & 0 deletions pcmdi_metrics/sea_ice/lib/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .sea_ice_parser import create_sea_ice_parser
Loading

0 comments on commit 43dab6b

Please sign in to comment.