Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

498 mimic camchem substep convergence failure integration acceptance #582

29 changes: 11 additions & 18 deletions include/micm/solver/backward_euler.inl
Original file line number Diff line number Diff line change
Expand Up @@ -157,29 +157,22 @@ namespace micm
(std::abs(*forcing_iter) <= parameters_.relative_tolerance_ * std::abs(*yn1_iter));
++forcing_iter, ++yn1_iter, ++abs_tol_iter;
} while (converged && forcing_iter != forcing.end());

if (!converged)
{
std::cout << "failed to converge within the newton iteration\n";
}
} while (!converged && iterations < max_iter);

if (!converged)
{
std::cout << "failed to converge\n";
n_successful_integrations = 0;

if (n_convergence_failures >= time_step_reductions.size())
{
// we have failed to converge, accept the solution
// TODO: continue on with the current solution to get the full solution
n_convergence_failures = 0;
// give_up = true;
t += H;
throw std::system_error(make_error_code(MicmBackwardEulerErrc::FailedToConverge), "Failed to converge");
};

H *= time_step_reductions[n_convergence_failures++];
std::cerr << "Failed to converge too many times in a row. Accepting the current integration and continuing on.\n";
K20shores marked this conversation as resolved.
Show resolved Hide resolved
break;
K20shores marked this conversation as resolved.
Show resolved Hide resolved
}
else {
std::cerr << "Failed to converge. Reducing the time step.\n";
K20shores marked this conversation as resolved.
Show resolved Hide resolved
H *= time_step_reductions[n_convergence_failures++];
}

}
else
{
Expand All @@ -194,13 +187,13 @@ namespace micm
n_successful_integrations = 0;
H *= 2.0;
}
// Don't let H go past the time step
H = std::min(H, time_step - t);
K20shores marked this conversation as resolved.
Show resolved Hide resolved
}

// Don't let H go past the time step
H = std::min(H, time_step - t);
}

state.variables_ = Yn1;
result.final_time_ = t;
return result;
}
} // namespace micm
227 changes: 227 additions & 0 deletions test/integration/analytical_policy.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -1705,3 +1705,230 @@ void test_analytical_robertson(BuilderPolicy& builder, double tolerance = 1e-8)
<< "Arrays differ at index (" << i << ", " << 2 << ")";
}
}

void test_analytical_oregonator(auto& solver, double tolerance = 1e-8)
{
/*
* This problem is described in
* Hairer, E., Wanner, G., 1996. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd
* edition. ed. Springer, Berlin ; New York. Page 3
*
* solutions are provided here
* https://www.unige.ch/~hairer/testset/testset.html
*/

double end = 360;
double time_step = 30;
size_t N = static_cast<size_t>(end / time_step);

std::vector<std::vector<double>> model_concentrations(N + 1, std::vector<double>(3));
std::vector<std::vector<double>> analytical_concentrations(13, std::vector<double>(3));

model_concentrations[0] = { 1, 2, 3 };

analytical_concentrations = {
{ 1, 2, 3 },
{ 0.1000661467180497E+01, 0.1512778937348249E+04, 0.1035854312767229E+05 },
{ 0.1000874625199626E+01, 0.1144336972384497E+04, 0.8372149966624639E+02 },
{ 0.1001890368438751E+01, 0.5299926232295553E+03, 0.1662279579042420E+01 },
{ 0.1004118022612645E+01, 0.2438326079910346E+03, 0.1008822224048647E+01 },
{ 0.1008995416634061E+01, 0.1121664388662539E+03, 0.1007783229065319E+01 },
{ 0.1019763472537298E+01, 0.5159761322947535E+02, 0.1016985778956374E+01 },
{ 0.1043985088527474E+01, 0.2373442027531524E+02, 0.1037691843544522E+01 },
{ 0.1100849071667922E+01, 0.1091533805469020E+02, 0.1085831969810860E+01 },
{ 0.1249102130020572E+01, 0.5013945178605446E+01, 0.1208326626237875E+01 },
{ 0.1779724751937019E+01, 0.2281852385542403E+01, 0.1613754023671725E+01 },
{ 0.1000889326903503E+01, 0.1125438585746596E+04, 0.1641049483777168E+05 },
{ 0.1000814870318523E+01, 0.1228178521549889E+04, 0.1320554942846513E+03 },
};

auto state = solver.rates_.GetState();

state.variables_[0] = model_concentrations[0];

std::vector<double> times;
times.push_back(0);
for (size_t i_time = 0; i_time < N; ++i_time)
{
double solve_time = time_step + i_time * time_step;
times.push_back(solve_time);
// Model results
double actual_solve = 0;
while (actual_solve < time_step)
{
auto result = solver.Solve(time_step - actual_solve, state);
actual_solve += result.final_time_;
}
model_concentrations[i_time + 1] = state.variables_[0];
}

std::vector<std::string> header = { "time", "A", "B", "C" };
writeCSV("model_concentrations.csv", header, model_concentrations, times);
std::vector<double> an_times;
an_times.push_back(0);
for (int i = 1; i <= 12; ++i)
{
an_times.push_back(time_step * i);
}
writeCSV("analytical_concentrations.csv", header, analytical_concentrations, an_times);

auto map = state.variable_map_;

size_t _a = map.at("A");
size_t _b = map.at("B");
size_t _c = map.at("C");

for (size_t i = 0; i < model_concentrations.size(); ++i)
{
// EXPECT_NEAR(model_concentrations[i][_a], analytical_concentrations[i][0], tolerance)
// << "Arrays differ at index (" << i << ", " << 0 << ")";
// EXPECT_NEAR(model_concentrations[i][_b], analytical_concentrations[i][1], tolerance)
// << "Arrays differ at index (" << i << ", " << 1 << ")";
// EXPECT_NEAR(model_concentrations[i][_c], analytical_concentrations[i][2], tolerance)
// << "Arrays differ at index (" << i << ", " << 2 << ")";
double rel_diff = relative_difference(model_concentrations[i][_a], analytical_concentrations[i][0]);
EXPECT_NEAR(0, rel_diff, tolerance) << "Arrays differ at index (" << i << ", " << 0 << ")";
rel_diff = relative_difference(model_concentrations[i][_b], analytical_concentrations[i][1]);
EXPECT_NEAR(0, rel_diff, tolerance) << "Arrays differ at index (" << i << ", " << 1 << ")";
rel_diff = relative_difference(model_concentrations[i][_c], analytical_concentrations[i][2]);
EXPECT_NEAR(0, rel_diff, tolerance) << "Arrays differ at index (" << i << ", " << 2 << ")";
}
}

void test_analytical_hires(auto& solver, double tolerance = 1e-8)
{
/*
* This problem is described in
* Hairer, E., Wanner, G., 1996. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd
* edition. ed. Springer, Berlin ; New York. Page 3
*
* solutions are provided here
* https://www.unige.ch/~hairer/testset/testset.html
*/

size_t N = 2;

std::vector<std::vector<double>> model_concentrations(N + 1, std::vector<double>(8));
std::vector<std::vector<double>> analytical_concentrations(3, std::vector<double>(8));

model_concentrations[0] = { 1, 0, 0, 0, 0, 0, 0, 0.0057 };

analytical_concentrations = {
{ 1, 0, 0, 0, 0, 0, 0, 0.0057 },
{ 0.000737131257332567,
0.000144248572631618,
0.000058887297409676,
0.001175651343283149,
0.002386356198831330,
0.006238968252742796,
0.002849998395185769,
0.002850001604814231 },
{ 0.000670305503581864,
0.000130996846986347,
0.000046862231597733,
0.001044668020551705,
0.000594883830951485,
0.001399628833942774,
0.001014492757718480,
0.004685507242281520 },
};

auto state = solver.rates_.GetState();

state.variables_[0] = model_concentrations[0];

std::vector<double> times;
times.push_back(0);
double time_step = 321.8122;
for (size_t i_time = 0; i_time < N; ++i_time)
{
double solve_time = time_step + i_time * time_step;
times.push_back(solve_time);
// Model results
double actual_solve = 0;
while (actual_solve < time_step)
{
auto result = solver.Solve(time_step - actual_solve, state);
actual_solve += result.final_time_;
}
model_concentrations[i_time + 1] = state.variables_[0];
time_step += 100;
}

std::vector<std::string> header = { "time", "y1", "y2", "y3", "y4", "y5", "y6", "y7", "y8" };
writeCSV("model_concentrations.csv", header, model_concentrations, times);
writeCSV("analytical_concentrations.csv", header, analytical_concentrations, times);

for (size_t i = 0; i < model_concentrations.size(); ++i)
{
for (size_t j = 0; j < model_concentrations[0].size(); ++j)
{
EXPECT_NEAR(model_concentrations[i][j], analytical_concentrations[i][j], tolerance);
}
}
}

void test_analytical_e5(auto& solver, double tolerance = 1e-8)
{
/*
* This problem is described in
* Hairer, E., Wanner, G., 1996. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd
* edition. ed. Springer, Berlin ; New York. Page 3
*
* solutions are provided here
* https://www.unige.ch/~hairer/testset/testset.html
*/

size_t N = 7;

std::vector<std::vector<double>> model_concentrations(N + 1, std::vector<double>(4));
std::vector<std::vector<double>> analytical_concentrations(N + 1, std::vector<double>(4));

model_concentrations[0] = { 1.76e-3, 0, 0, 0 };

analytical_concentrations = {
{ 1.76e-3, 0, 0, 0 },
{ 1.7599259497677897058e-003, 1.3846281519376516449e-011, 7.6370038530073911180e-013, 1.3082581134075777338e-011 },
{ 1.6180769999072942552e-003, 1.3822370304983735443e-010, 8.2515735006838336088e-012, 1.2997212954915352082e-010 },
{ 7.4813208224292220114e-006, 2.3734781561205975019e-012, 2.2123586689581663654e-012, 1.6111948716243113653e-013 },
{ 4.7150333630401632232e-010, 1.8188895860807021729e-014, 1.8188812376786725407e-014, 8.3484020296321693074e-020 },
{ 3.1317148329356996037e-014, 1.4840957952870064294e-016, 1.4840957948345691466e-016, 4.5243728279782625194e-026 },
{ 3.8139035189787091771e-049, 1.0192582567660293322e-020, 1.0192582567660293322e-020, 3.7844935507486221171e-065 },
{ 0.0000000000000000000e-000, 8.8612334976263783420e-023, 8.8612334976263783421e-023, 0.0000000000000000000e-000 }
};

auto state = solver.rates_.GetState();

state.variables_[0] = model_concentrations[0];

std::vector<double> times;
times.push_back(0);
double time_step = 10;
for (size_t i_time = 0; i_time < N; ++i_time)
{
double solve_time = time_step + i_time * time_step;
times.push_back(solve_time);
// Model results
double actual_solve = 0;
while (actual_solve < time_step)
{
auto result = solver.Solve(time_step - actual_solve, state);
actual_solve += result.final_time_;
}
model_concentrations[i_time + 1] = state.variables_[0];
time_step *= 100;
}

std::vector<std::string> header = { "time", "y1", "y2", "y3", "y4" };
writeCSV("model_concentrations.csv", header, model_concentrations, times);
writeCSV("analytical_concentrations.csv", header, analytical_concentrations, times);

for (size_t i = 0; i < model_concentrations.size(); ++i)
{
for (size_t j = 0; j < model_concentrations[0].size(); ++j)
{
EXPECT_NEAR(model_concentrations[i][j], analytical_concentrations[i][j], tolerance)
<< "difference at (" << i << ", " << j << ")";
}
}
}
Loading
Loading