Skip to content

Commit

Permalink
Add direct calls to BLAS to compute SVDs (#1259)
Browse files Browse the repository at this point in the history
* Add direct calls to BLAS to compute SVD

* Move funcs with direct BLAS interface to new file

* Use @CCall

* Restrict BLAS interface to Julia v1.7 or higher

* Bump version to 1.9.5
  • Loading branch information
ronisbr authored Jun 6, 2024
1 parent c4092a1 commit 609aa34
Show file tree
Hide file tree
Showing 5 changed files with 168 additions and 4 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "StaticArrays"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "1.9.4"
version = "1.9.5"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
4 changes: 4 additions & 0 deletions src/StaticArrays.jl
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,10 @@ include("flatten.jl")
include("io.jl")
include("pinv.jl")

@static if VERSION >= v"1.7"
include("blas.jl")
end

@static if !isdefined(Base, :get_extension) # VERSION < v"1.9-"
include("../ext/StaticArraysStatisticsExt.jl")
end
Expand Down
141 changes: 141 additions & 0 deletions src/blas.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# This file contains funtions that uses a direct interface to BLAS library. We use this
# approach to reduce allocations.

import LinearAlgebra: BLAS, LAPACK, libblastrampoline

# == Singular Value Decomposition ==========================================================

# Implement direct call to BLAS functions that computes the SVD values for `SMatrix` and
# `MMatrix` reducing allocations. In this case, we use `MMatrix` to call the library and
# convert the result back to the input type. Since the former does not exit this scope, we
# can reduce allocations.
#
# We are implementing here the following functions:
#
# svdvals(A::SMatrix{M, N, Float64}) where {M, N}
# svdvals(A::SMatrix{M, N, Float32}) where {M, N}
# svdvals(A::MMatrix{M, N, Float64}) where {M, N}
# svdvals(A::MMatrix{M, N, Float32}) where {M, N}
#
for (gesdd, elty) in ((:dgesdd_, :Float64), (:sgesdd_, :Float32)),
(mtype, vtype) in ((SMatrix, SVector), (MMatrix, MVector))

blas_func = @eval BLAS.@blasfunc($gesdd)

@eval begin
function svdvals(A::$mtype{M, N, $elty}) where {M, N}
K = min(M, N)

# Convert the input to a `MMatrix` and allocate the required arrays.
Am = MMatrix{M, N, $elty}(A)
Sm = MVector{K, $elty}(undef)

# We compute the `lwork` (size of the work array) by obtaining the maximum value
# from the possibilities shown in:
# https://docs.oracle.com/cd/E19422-01/819-3691/dgesdd.html
lwork = max(8N, 3N + max(M, 7N), 8M, 3M + max(N, 7M))
work = MVector{lwork, $elty}(undef)
iwork = MVector{8min(M, N), BLAS.BlasInt}(undef)
info = Ref(1)

@ccall libblastrampoline.$blas_func(
'N'::Ref{UInt8},
M::Ref{BLAS.BlasInt},
N::Ref{BLAS.BlasInt},
Am::Ptr{$elty},
M::Ref{BLAS.BlasInt},
Sm::Ptr{$elty},
C_NULL::Ptr{C_NULL},
M::Ref{BLAS.BlasInt},
C_NULL::Ptr{C_NULL},
K::Ref{BLAS.BlasInt},
work::Ptr{$elty},
lwork::Ref{BLAS.BlasInt},
iwork::Ptr{BLAS.BlasInt},
info::Ptr{BLAS.BlasInt},
1::Clong
)::Cvoid

# Check if the return result of the function.
LAPACK.chklapackerror(info.x)

# Convert the vector to static arrays and return.
S = $vtype{K, $elty}(Sm)

return S
end
end
end

# For matrices with interger numbers, we should promote them to float and call `svdvals`.
@inline svdvals(A::StaticMatrix{<: Any, <: Any, <: Integer}) = svdvals(float(A))

# Implement direct call to BLAS functions that computes the SVD for `SMatrix` and `MMatrix`
# reducing allocations. In this case, we use `MMatrix` to call the library and convert the
# result back to the input type. Since the former does not exit this scope, we can reduce
# allocations.
#
# We are implementing here the following functions:
#
# _svd(A::SMatrix{M, N, Float64}, full::Val{false}) where {M, N}
# _svd(A::SMatrix{M, N, Float64}, full::Val{true}) where {M, N}
# _svd(A::SMatrix{M, N, Float32}, full::Val{false}) where {M, N}
# _svd(A::SMatrix{M, N, Float32}, full::Val{true}) where {M, N}
# _svd(A::MMatrix{M, N, Float64}, full::Val{false}) where {M, N}
# _svd(A::MMatrix{M, N, Float64}, full::Val{true}) where {M, N}
# _svd(A::MMatrix{M, N, Float32}, full::Val{false}) where {M, N}
# _svd(A::MMatrix{M, N, Float32}, full::Val{true}) where {M, N}
#
for (gesvd, elty) in ((:dgesvd_, :Float64), (:sgesvd_, :Float32)),
full in (false, true),
(mtype, vtype) in ((SMatrix, SVector), (MMatrix, MVector))

blas_func = @eval BLAS.@blasfunc($gesvd)

@eval begin
function _svd(A::$mtype{M, N, $elty}, full::Val{$full}) where {M, N}
K = min(M, N)

# Convert the input to a `MMatrix` and allocate the required arrays.
Am = MMatrix{M, N, $elty}(A)
Um = MMatrix{M, $(full ? :M : :K), $elty}(undef)
Sm = MVector{K, $elty}(undef)
Vtm = MMatrix{$(full ? :N : :K), N, $elty}(undef)
lwork = max(3min(M, N) + max(M, N), 5min(M, N))
work = MVector{lwork, $elty}(undef)
info = Ref(1)

@ccall libblastrampoline.$blas_func(
$(full ? 'A' : 'S')::Ref{UInt8},
$(full ? 'A' : 'S')::Ref{UInt8},
M::Ref{BLAS.BlasInt},
N::Ref{BLAS.BlasInt},
Am::Ptr{$elty},
M::Ref{BLAS.BlasInt},
Sm::Ptr{$elty},
Um::Ptr{$elty},
M::Ref{BLAS.BlasInt},
Vtm::Ptr{$elty},
$(full ? :N : :K)::Ref{BLAS.BlasInt},
work::Ptr{$elty},
lwork::Ref{BLAS.BlasInt},
info::Ptr{BLAS.BlasInt},
1::Clong,
1::Clong
)::Cvoid

# Check if the return result of the function.
LAPACK.chklapackerror(info.x)

# Convert the matrices to the correct type and return.
U = $mtype{M, $(full ? :M : :K), $elty}(Um)
S = $vtype{K, $elty}(Sm)
Vt = $mtype{$(full ? :N : :K), N, $elty}(Vtm)

return SVD(U, S, Vt)
end
end
end

# For matrices with interger numbers, we should promote them to float and call `svd`.
@inline svd(A::StaticMatrix{<: Any, <: Any, <: Integer}) = svd(float(A))
1 change: 1 addition & 0 deletions src/svd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -73,3 +73,4 @@ function diagmult(sd, sB, d, B)
ind = SOneTo(sd[1])
return isa(B, AbstractVector) ? Diagonal(d)*B[ind] : Diagonal(d)*B[ind,:]
end

24 changes: 21 additions & 3 deletions test/svd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,10 @@ using StaticArrays, Test, LinearAlgebra

@testset "SVD factorization" begin
m3 = @SMatrix Float64[3 9 4; 6 6 2; 3 7 9]
m3_f32 = @SMatrix Float32[3 9 4; 6 6 2; 3 7 9]
m3c = ComplexF64.(m3)
m23 = @SMatrix Float64[3 9 4; 6 6 2]
m23_f32 = @SMatrix Float32[3 9 4; 6 6 2]
m_sing = @SMatrix [2.0 3.0 5.0; 4.0 6.0 10.0; 1.0 1.0 1.0]
m_sing2 = @SMatrix [1 1; 1 0; 0 1]
v = @SVector [1, 2, 3]
Expand All @@ -18,16 +20,22 @@ using StaticArrays, Test, LinearAlgebra
@testinf svdvals((@SMatrix [2 -2; 1 1]) / sqrt(2)) [2, 1]

@testinf svdvals(m3) svdvals(Matrix(m3))
@testinf svdvals(m3_f32) svdvals(Matrix(m3_f32))
@testinf svdvals(m3c) isa SVector{3,Float64}

@testinf svd(m3).U::StaticMatrix svd(Matrix(m3)).U
@testinf svd(m3).S::StaticVector svd(Matrix(m3)).S
@testinf svd(m3).V::StaticMatrix svd(Matrix(m3)).V
@testinf svd(m3).Vt::StaticMatrix svd(Matrix(m3)).Vt

@testinf svd(@SMatrix [2 0; 0 0]).U === one(SMatrix{2,2})
@testinf svd(@SMatrix [2 0; 0 0]).S === SVector(2.0, 0.0)
@testinf svd(@SMatrix [2 0; 0 0]).Vt === one(SMatrix{2,2})
@test svd(m3_f32).U::StaticMatrix svd(Matrix(m3_f32)).U atol = 5e-7
@test svd(m3_f32).S::StaticVector svd(Matrix(m3_f32)).S atol = 5e-7
@test svd(m3_f32).V::StaticMatrix svd(Matrix(m3_f32)).V atol = 5e-7
@test svd(m3_f32).Vt::StaticMatrix svd(Matrix(m3_f32)).Vt atol = 5e-7

@testinf svd(@SMatrix [2 0; 0 0]).U one(SMatrix{2,2})
@testinf svd(@SMatrix [2 0; 0 0]).S SVector(2.0, 0.0)
@testinf svd(@SMatrix [2 0; 0 0]).Vt one(SMatrix{2,2})

@testinf svd((@SMatrix [2 -2; 1 1]) / sqrt(2)).U [-1 0; 0 1]
@testinf svd((@SMatrix [2 -2; 1 1]) / sqrt(2)).S [2, 1]
Expand All @@ -41,6 +49,16 @@ using StaticArrays, Test, LinearAlgebra
@testinf svd(m23').S svd(Matrix(m23')).S
@testinf svd(m23').Vt svd(Matrix(m23')).Vt

@test svd(m23_f32).U::StaticMatrix svd(Matrix(m23_f32)).U atol = 5e-7
@test svd(m23_f32).S::StaticVector svd(Matrix(m23_f32)).S atol = 5e-7
@test svd(m23_f32).V::StaticMatrix svd(Matrix(m23_f32)).V atol = 5e-7
@test svd(m23_f32).Vt::StaticMatrix svd(Matrix(m23_f32)).Vt atol = 5e-7

@test svd(m23_f32').U::StaticMatrix svd(Matrix(m23_f32')).U atol = 5e-7
@test svd(m23_f32').S::StaticVector svd(Matrix(m23_f32')).S atol = 5e-7
@test svd(m23_f32').V::StaticMatrix svd(Matrix(m23_f32')).V atol = 5e-7
@test svd(m23_f32').Vt::StaticMatrix svd(Matrix(m23_f32')).Vt atol = 5e-7

@testinf svd(m23, full=true).U::StaticMatrix svd(Matrix(m23), full=true).U
@testinf svd(m23, full=true).S::StaticVector svd(Matrix(m23), full=true).S
@testinf svd(m23, full=true).Vt::StaticMatrix svd(Matrix(m23), full=true).Vt
Expand Down

2 comments on commit 609aa34

@mateuszbaran
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/108399

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v1.9.5 -m "<description of version>" 609aa343a0504c3f5bae82a6236c563a0fa72681
git push origin v1.9.5

Please sign in to comment.