-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1bd226e
commit 7f46265
Showing
5 changed files
with
335 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
struct ToeplitzPlusHankel{T, S, P1 <: Plan{S}, P2 <: Plan{S}} <: AbstractMatrix{T} | ||
tc::Vector{T} | ||
tr::Vector{T} | ||
h::Vector{T} | ||
th_dft::Matrix{S} | ||
tht_dft::Matrix{S} | ||
temp::Matrix{S} | ||
plan::P1 | ||
iplan::P2 | ||
size::NTuple{2, Int} | ||
end | ||
|
||
# enforces tr[1] == tc[1] | ||
function ToeplitzPlusHankel(tc::Vector{T}, tr::Vector{T}, h::Vector{T}) where T | ||
m = length(tc) | ||
n = length(tr) | ||
@assert length(h) == m+n-1 | ||
tr[1] = tc[1] | ||
mn = m+n | ||
S = promote_type(float(T), Complex{Float32}) | ||
th_dft = Matrix{S}(undef, mn, 2) | ||
copyto!(th_dft, 1, tc, 1, m) | ||
th_dft[m+1, 1] = zero(T) | ||
copyto!(th_dft, m+2, Iterators.reverse(tr), 1, n-1) | ||
copyto!(th_dft, mn+1, h, n, m) | ||
th_dft[m+1, 2] = zero(T) | ||
copyto!(th_dft, mn+m+2, h, 1, n-1) | ||
tht_dft = Matrix{S}(undef, mn, 2) | ||
copyto!(tht_dft, 1, tr, 1, n) | ||
tht_dft[n+1, 1] = zero(T) | ||
copyto!(tht_dft, n+2, Iterators.reverse(tc), 1, m-1) | ||
copyto!(tht_dft, mn+1, h, m, n) | ||
tht_dft[n+1, 2] = zero(T) | ||
copyto!(tht_dft, mn+n+2, h, 1, m-1) | ||
|
||
plan = plan_fft!(th_dft, 1) | ||
plan*th_dft | ||
plan*tht_dft | ||
temp = zeros(S, mn, 2) | ||
iplan = inv(plan) | ||
|
||
ToeplitzPlusHankel{T, S, typeof(plan), typeof(iplan)}(tc, tr, h, th_dft, tht_dft, temp, plan, iplan, (m, n)) | ||
end | ||
|
||
# A ChebyshevGramMatrix isa (symmetric positive-definite) ToeplitzPlusHankel matrix. | ||
function ToeplitzPlusHankel(G::ChebyshevGramMatrix) | ||
n = size(G, 1) | ||
ToeplitzPlusHankel(G.μ[1:n]/2, G.μ[1:n]/2, G.μ/2) | ||
end | ||
|
||
size(A::ToeplitzPlusHankel) = A.size | ||
getindex(A::ToeplitzPlusHankel, i::Integer, j::Integer) = (i ≥ j ? A.tc[i-j+1] : A.tr[j-i+1]) + A.h[i+j-1] | ||
|
||
# A view of a T+H is also T+H. | ||
function getindex(A::ToeplitzPlusHankel, ir::UnitRange{Int}, jr::UnitRange{Int}) | ||
fir, lir = first(ir), last(ir) | ||
fjr, ljr = first(jr), last(jr) | ||
if fir ≥ fjr | ||
tc = A.tc[fir-fjr+1:lir-fjr+1] | ||
tr = [A.tc[fir-fjr+1:-1:max(1, fir-ljr+1)]; A.tr[2:ljr-fir+1]] | ||
else | ||
tc = [A.tr[fjr-fir+1:-1:max(1, fjr-lir+1)]; A.tc[2:lir-fjr+1]] | ||
tr = A.tr[fjr-fir+1:ljr-fir+1] | ||
end | ||
ToeplitzPlusHankel(tc, tr, A.h[fir+fjr-1:lir+ljr-1]) | ||
end | ||
|
||
|
||
# y ← A x α + y β | ||
function mul!(y::StridedVector{T}, A::ToeplitzPlusHankel{T}, x::StridedVector{T}, α::S, β::S) where {T <: Real, S <: Real} | ||
m, n = size(A) | ||
@assert m == length(y) | ||
@assert n == length(x) | ||
mn = m+n | ||
th_dft = A.th_dft | ||
temp = A.temp | ||
plan = A.plan | ||
iplan = A.iplan | ||
|
||
copyto!(temp, 1, x, 1, n) | ||
copyto!(temp, mn+1, Iterators.reverse(x), 1, n) | ||
@inbounds for j in n+1:mn | ||
temp[j, 1] = zero(T) | ||
temp[j, 2] = zero(T) | ||
end | ||
plan*temp | ||
temp .*= th_dft | ||
iplan*temp | ||
|
||
if iszero(β) | ||
@inbounds @simd for i in 1:m | ||
y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) | ||
end | ||
else | ||
@inbounds @simd for i in 1:m | ||
y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + β*y[i] | ||
end | ||
end | ||
return y | ||
end | ||
|
||
# y ← A' x α + y β | ||
function mul!(y::StridedVector{T}, A::Adjoint{T, <:ToeplitzPlusHankel{T}}, x::StridedVector{T}, α::S, β::S) where {T <: Real, S <: Real} | ||
m, n = size(A) | ||
@assert m == length(y) | ||
@assert n == length(x) | ||
mn = m+n | ||
AP = A.parent | ||
tht_dft = AP.tht_dft | ||
temp = AP.temp | ||
plan = AP.plan | ||
iplan = AP.iplan | ||
|
||
copyto!(temp, 1, x, 1, n) | ||
copyto!(temp, mn+1, Iterators.reverse(x), 1, n) | ||
@inbounds for j in n+1:mn | ||
temp[j, 1] = zero(T) | ||
temp[j, 2] = zero(T) | ||
end | ||
plan*temp | ||
temp .*= tht_dft | ||
iplan*temp | ||
|
||
if iszero(β) | ||
@inbounds @simd for i in 1:m | ||
y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) | ||
end | ||
else | ||
@inbounds @simd for i in 1:m | ||
y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + β*y[i] | ||
end | ||
end | ||
return y | ||
end | ||
|
||
|
||
# C ← A B α + C β | ||
function mul!(C::StridedMatrix{T}, A::ToeplitzPlusHankel{T}, B::StridedMatrix{T}, α::S, β::S) where {T <: Real, S <: Real} | ||
m, n = size(A) | ||
@assert m == size(C, 1) | ||
@assert n == size(B, 1) | ||
p = size(B, 2) | ||
if size(C, 2) != p | ||
throw(DimensionMismatch("input and output matrices must have same number of columns")) | ||
end | ||
|
||
th_dft = A.th_dft | ||
TC = promote_type(float(T), Complex{Float32}) | ||
temp = zeros(TC, m+n, 2p) | ||
plan = plan_fft!(temp, 1) | ||
|
||
for k in 1:p | ||
copyto!(view(temp, :, 2k-1), 1, view(B, :, k), 1, n) | ||
copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(B, :, k)), 1, n) | ||
end | ||
plan*temp | ||
for k in 1:p | ||
vt = view(temp, :, 2k-1:2k) | ||
vt .*= th_dft | ||
end | ||
plan\temp | ||
|
||
if iszero(β) | ||
@inbounds for k in 1:p | ||
for i in 1:m | ||
C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) | ||
end | ||
end | ||
else | ||
@inbounds for k in 1:p | ||
for i in 1:m | ||
C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[i, k] | ||
end | ||
end | ||
end | ||
return C | ||
end | ||
|
||
# Morally equivalent to mul!(C', B', A', α, β)' with StridedMatrix replaced by AbstractMatrix below | ||
function mul!(C::StridedMatrix{T}, A::StridedMatrix{T}, B::ToeplitzPlusHankel{T}, α::S, β::S) where {T <: Real, S <: Real} | ||
n, m = size(B) | ||
@assert m == size(C, 2) | ||
@assert n == size(A, 2) | ||
p = size(A, 1) | ||
if size(C, 1) != p | ||
throw(DimensionMismatch("input and output matrices must have same number of rows")) | ||
end | ||
|
||
tht_dft = B.tht_dft | ||
TC = promote_type(float(T), Complex{Float32}) | ||
temp = zeros(TC, m+n, 2p) | ||
plan = plan_fft!(temp, 1) | ||
|
||
for k in 1:p | ||
copyto!(view(temp, :, 2k-1), 1, view(A, k, :), 1, n) | ||
copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(A, k, :)), 1, n) | ||
end | ||
plan*temp | ||
for k in 1:p | ||
vt = view(temp, :, 2k-1:2k) | ||
vt .*= tht_dft | ||
end | ||
plan\temp | ||
|
||
if iszero(β) | ||
@inbounds for k in 1:p | ||
for i in 1:m | ||
C[k, i] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) | ||
end | ||
end | ||
else | ||
@inbounds for k in 1:p | ||
for i in 1:m | ||
C[k, i] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[k, i] | ||
end | ||
end | ||
end | ||
return C | ||
end | ||
|
||
# C ← A' B α + C β | ||
function mul!(C::StridedMatrix{T}, A::Adjoint{T, <:ToeplitzPlusHankel{T}}, B::StridedMatrix{T}, α::S, β::S) where {T <: Real, S <: Real} | ||
m, n = size(A) | ||
@assert m == size(C, 1) | ||
@assert n == size(B, 1) | ||
p = size(B, 2) | ||
if size(C, 2) != p | ||
throw(DimensionMismatch("input and output matrices must have same number of columns")) | ||
end | ||
|
||
tht_dft = A.parent.tht_dft | ||
TC = promote_type(float(T), Complex{Float32}) | ||
temp = zeros(TC, m+n, 2p) | ||
plan = plan_fft!(temp, 1) | ||
|
||
for k in 1:p | ||
copyto!(view(temp, :, 2k-1), 1, view(B, :, k), 1, n) | ||
copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(B, :, k)), 1, n) | ||
end | ||
plan*temp | ||
for k in 1:p | ||
vt = view(temp, :, 2k-1:2k) | ||
vt .*= tht_dft | ||
end | ||
plan\temp | ||
|
||
if iszero(β) | ||
@inbounds for k in 1:p | ||
for i in 1:m | ||
C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) | ||
end | ||
end | ||
else | ||
@inbounds for k in 1:p | ||
for i in 1:m | ||
C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[i, k] | ||
end | ||
end | ||
end | ||
return C | ||
end | ||
|
||
# Estimate the Frobenius norm of the Toeplitz-plus-Hankel matrix by working with the symbols. | ||
function normest(A::ToeplitzPlusHankel{T}) where T | ||
m, n = size(A) | ||
tc = A.tc | ||
tr = A.tr | ||
h = A.h | ||
ret1 = zero(T) | ||
ret2 = zero(T) | ||
if m == min(m, n) | ||
for i = 1:m | ||
ret1 += (m+1-i)*abs2(tc[i]) | ||
end | ||
for i = 2:n-m | ||
ret1 += m*abs2(tr[i]) | ||
end | ||
for i = n-m+1:n | ||
ret1 += (n-i)*abs2(tr[i]) | ||
end | ||
for i = 1:m | ||
ret2 += i*abs2(h[i]) | ||
end | ||
for i = m+1:n | ||
ret2 += m*abs2(h[i]) | ||
end | ||
for i = n+1:m+n-1 | ||
ret2 += (m+n-i)*abs2(h[i]) | ||
end | ||
else | ||
for i = 1:n | ||
ret1 += (n+1-i)*abs2(tr[i]) | ||
end | ||
for i = 2:m-n | ||
ret1 += n*abs2(tc[i]) | ||
end | ||
for i = m-n+1:m | ||
ret1 += (m-i)*abs2(tc[i]) | ||
end | ||
for i = 1:n | ||
ret2 += i*abs2(h[i]) | ||
end | ||
for i = n+1:m | ||
ret2 += n*abs2(h[i]) | ||
end | ||
for i = m+1:m+n-1 | ||
ret2 += (m+n-i)*abs2(h[i]) | ||
end | ||
end | ||
sqrt(ret1) + sqrt(ret2) | ||
end | ||
|
||
normest(A::Symmetric{T, <: ToeplitzPlusHankel{T}}) where T = normest(parent(A)) | ||
normest(A::Hermitian{T, <: ToeplitzPlusHankel{T}}) where T = normest(parent(A)) | ||
|
||
function normest(A::ChebyshevGramMatrix{T}) where T | ||
n = size(A, 1) | ||
normest(A[1:n, 1:n]) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
using FastTransforms, LinearAlgebra, Test | ||
|
||
@testset "ToeplitzPlusHankel" begin | ||
n = 128 | ||
for T in (Float32, Float64) | ||
μ = FastTransforms.chebyshevmoments1(T, 2n-1) | ||
G = ChebyshevGramMatrix(μ) | ||
TpH = ToeplitzPlusHankel(G) | ||
@test TpH ≈ G | ||
end | ||
end |