Skip to content

Commit

Permalink
Updated for f6632a8
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Dec 5, 2024
1 parent f6632a8 commit 527c144
Show file tree
Hide file tree
Showing 1,952 changed files with 1,145,647 additions and 0 deletions.
27 changes: 27 additions & 0 deletions docs/Algebra/Literals.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
{-# OPTIONS --without-K --safe #-}

module Algebra.Literals where

open import Algebra

open import Agda.Builtin.FromNat
open import Agda.Builtin.FromNeg
open import Level

variable a b : Level

module Semiring-Lit (R : Semiring a b) where
open Semiring R

open import Data.Unit.Polymorphic
open import Data.Nat using (ℕ; zero; suc)

private
ℕ→R : Carrier
ℕ→R zero = 0#
ℕ→R (suc n) = 1# + ℕ→R n

instance
number : Number Carrier
number .Number.Constraint = λ _
number .fromNat = λ n ℕ→R n
55 changes: 55 additions & 0 deletions docs/Algebra/PairOp.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
{-# OPTIONS --safe #-}

open import Prelude

open import Algebra
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Relation.Binary

module Algebra.PairOp (X : Type) (ε : X) (_≈_ : Rel X zeroˡ) (_∙_ : Op₂ X) where

_∙ᵖ_ : (X × X) (X × X) (X × X)
(a , b) ∙ᵖ (c , d) = (a ∙ c) , (b ∙ d)

_≈ᵖ_ : Rel (X × X) zeroˡ
_≈ᵖ_ = Pointwise _≈_ _≈_

pairOpIdentityˡ :
Algebra.LeftIdentity _≈_ ε _∙_ Algebra.LeftIdentity _≈ᵖ_ (ε , ε) _∙ᵖ_
pairOpIdentityˡ idˡ (a , b) = ×-refl (idˡ a) (idˡ b) {ε , ε}

pairOpIdentityʳ :
Algebra.RightIdentity _≈_ ε _∙_ Algebra.RightIdentity _≈ᵖ_ (ε , ε) _∙ᵖ_
pairOpIdentityʳ idʳ (a , b) = ×-refl (idʳ a) (idʳ b) {ε , ε}

pairOpIdentity : Algebra.Identity _≈_ ε _∙_ Algebra.Identity _≈ᵖ_ (ε , ε) _∙ᵖ_
pairOpIdentity (idˡ , idʳ) = (pairOpIdentityˡ idˡ) , (pairOpIdentityʳ idʳ)

pairOpAssoc : Algebra.Associative _≈_ _∙_ Algebra.Associative _≈ᵖ_ _∙ᵖ_
pairOpAssoc assoc (a , b) (c , d) (e , f) =
×-refl (assoc a c e) (assoc b d f) {ε , ε}

pairOpIsMonoid : IsMonoid _≈_ _∙_ ε IsMonoid _≈ᵖ_ _∙ᵖ_ (ε , ε)
pairOpIsMonoid record { isSemigroup = isSemigroup ; identity = identity } = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = ×-isEquivalence
(IsMagma.isEquivalence (IsSemigroup.isMagma isSemigroup))
(IsMagma.isEquivalence (IsSemigroup.isMagma isSemigroup))
; ∙-cong = λ (p , q) (p′ , q′)
IsMagma.∙-cong (IsSemigroup.isMagma isSemigroup) p p′
, IsMagma.∙-cong (IsSemigroup.isMagma isSemigroup) q q′
}
; assoc = pairOpAssoc (IsSemigroup.assoc isSemigroup)
}
; identity = pairOpIdentity identity
}

pairOpComm : Algebra.Commutative _≈_ _∙_ Algebra.Commutative _≈ᵖ_ _∙ᵖ_
pairOpComm comm (a , b) (c , d) =
×-refl (comm a c) (comm b d) {ε , ε}

pairOpRespectsComm :
IsCommutativeMonoid _≈_ _∙_ ε IsCommutativeMonoid _≈ᵖ_ _∙ᵖ_ (ε , ε)
pairOpRespectsComm record { isMonoid = isMonoid ; comm = comm } = record
{ isMonoid = pairOpIsMonoid isMonoid ; comm = pairOpComm comm }
29 changes: 29 additions & 0 deletions docs/Data/Integer/Ext.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
{-# OPTIONS --safe #-}

module Data.Integer.Ext where

open import Data.Integer
open import Data.Integer.Properties using ([1+m]⊖[1+n]≡m⊖n)
open import Data.Nat
open import Data.Product
open import Data.Sign
open import Relation.Binary.PropositionalEquality using (_≡_; sym; cong; trans)

ℤtoSignedℕ : Sign × ℕ
ℤtoSignedℕ x = (sign x , ∣ x ∣)

posPart :
posPart x with ℤtoSignedℕ x
... | (Sign.+ , x) = x
... | _ = 0

negPart :
negPart x with ℤtoSignedℕ x
... | (Sign.- , x) = x
... | _ = 0

∸≡posPart⊖ : {m n : ℕ} (m ∸ n) ≡ posPart (m ⊖ n)
∸≡posPart⊖ {zero} {zero} = _≡_.refl
∸≡posPart⊖ {zero} {ℕ.suc n} = _≡_.refl
∸≡posPart⊖ {ℕ.suc m} {zero} = _≡_.refl
∸≡posPart⊖ {ℕ.suc m} {ℕ.suc n} = trans (∸≡posPart⊖{m}{n}) (sym (cong posPart (([1+m]⊖[1+n]≡m⊖n m n))))
51 changes: 51 additions & 0 deletions docs/Data/List/Ext.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
{-# OPTIONS --safe #-}
module Data.List.Ext where

open import Agda.Primitive using () renaming (Set to Type)

open import Data.List using (List; _++_; map; concatMap; filter)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties using (∈-map⁻; ∈-map⁺; ∈-filter⁻; ∈-filter⁺)
open import Data.Maybe using (Maybe)
open import Data.Nat using (ℕ)
open import Data.Product using (∃-syntax; _×_; _,_; proj₁; proj₂)
open import Function.Bundles using (_⇔_; mk⇔; Equivalence)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Unary using (Decidable)
open Maybe; open List; open
private variable
: Level
A B : Type ℓ

-- Looking up an index into the list; fails when out-of-bounds.
_⁉_ : List A Maybe A
[] ⁉ _ = nothing
(x ∷ _) ⁉ zero = just x
(_ ∷ xs) ⁉ suc n = xs ⁉ n

-- sublists of the given list
sublists : List A List (List A)
sublists [] = [] ∷ []
sublists (x ∷ xs) = map (x ∷_) (sublists xs) ++ sublists xs

-- insert the given element in every position of the given list
insert : A List A List (List A)
insert x [] = (x ∷ []) ∷ []
insert x (y ∷ ys) = (x ∷ y ∷ ys) ∷ map (y ∷_) (insert x ys)

-- permutations of all sublists of the given list
subpermutations : List A List (List A)
subpermutations [] = [] ∷ []
subpermutations (x ∷ xs) = concatMap (insert x) (subpermutations xs) ++ subpermutations xs

module _ {f : A B} {l : List A} {b} {P : A Type} {P? : Decidable P} where
∈ˡ-map-filter⁻ : b ∈ map f (filter P? l) (∃[ a ] a ∈ l × b ≡ f a × P a)
∈ˡ-map-filter⁻ h with ∈-map⁻ f h
... | a , a∈X , _≡_.refl = a , proj₁ (∈-filter⁻ P? a∈X) , _≡_.refl , proj₂ (∈-filter⁻ P? {xs = l} a∈X)

∈ˡ-map-filter⁺ : (∃[ a ] a ∈ l × b ≡ f a × P a) b ∈ map f (filter P? l)
∈ˡ-map-filter⁺ (a , a∈l , _≡_.refl , Pa) = ∈-map⁺ f (∈-filter⁺ P? a∈l Pa)

∈ˡ-map-filter : (∃[ a ] a ∈ l × b ≡ f a × P a) ⇔ b ∈ map f (filter P? l)
∈ˡ-map-filter = mk⇔ ∈ˡ-map-filter⁺ ∈ˡ-map-filter⁻
Loading

0 comments on commit 527c144

Please sign in to comment.