Skip to content

Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion

Notifications You must be signed in to change notification settings

Geo3D-AI-CSU/Bayesian-MCMC

Repository files navigation

数据和知识融合的Bayesian-MCMC三维地质建模

为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯-马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识认知。

论文链接:数据和知识融合的Bayesian-MCMC三维地质建模/Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion


鸣谢

中国冶金地质总局周尚国研究员和中南大学毛先成教授在资料收集工作中给予了热情协助,国家地理信息系统工程技术研究中心与中南大学共建“MAPGIS 实验 室”为本研究工作提供了MAPGIS软件,在此一并表示感谢!

About

Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion

Topics

Resources

Stars

Watchers

Forks