Skip to content

Garage-ISEP/AnotherNLP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hackathon IA - Isep - Sujet Sécurité

Vous trouverrez ici un boilerplate (template) pour le sujet Sécurité proposé par la Gendarmerie National lors du Hackathon IA organisé à l'Isep de 13 au 15 mai 2022.

+ Les données fournies par le sponsor du sujet se trouvent dans data/raw.

Comment utiliser ce template ?

# Git
git clone https://github.com/Garage-ISEP/hackathon-ia-securite
# GitHub CLI
gh repo create votre-repo -p Garage-ISEP/hackathon-ia-securite
gh repo clone votre-repo

Project Organization

├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published