Skip to content

Commit

Permalink
Finalize Test
Browse files Browse the repository at this point in the history
Standalone and PyTest
  • Loading branch information
ax3l committed Oct 10, 2024
1 parent e82838c commit be7e1f7
Showing 1 changed file with 125 additions and 127 deletions.
252 changes: 125 additions & 127 deletions tests/python/test_wake.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,141 +6,139 @@
np.set_printoptions(threshold=sys.maxsize)
from conftest import basepath

import impactx
from amrex.space3d import PODVector_real_std # Import amrex array
from impactx import ImpactX, wakeconvolution
from impactx import Config, ImpactX, amr, wakeconvolution


def test_wake(save_png=True):
try:
sim = ImpactX()
sim.n_cell = [16, 24, 32]
sim.load_inputs_file(basepath + "/examples/chicane/input_chicane_csr.in")
sim.slice_step_diagnostics = False

sim.init_grids()
sim.init_beam_distribution_from_inputs()
sim.init_lattice_elements_from_inputs()
sim.evolve()

sim.deposit_charge()

element_has_csr = True
R = 10.35 # Units [m]
sigma_t = 1.9975134930563207e-05

if element_has_csr:
pc = sim.particle_container()
x_min, y_min, t_min, x_max, y_max, t_max = pc.min_and_max_positions()

is_unity_particle_weight = False
GetNumberDensity = True

num_bins = 150
bin_min = t_min
bin_max = t_max
bin_size = (bin_max - bin_min) / (num_bins - 1)

# Create charge_distribution and slopes as PODVector_real_std
charge_distribution = PODVector_real_std(num_bins + 1)
slopes = PODVector_real_std(num_bins)

# Call deposit_charge with the correct type
wakeconvolution.deposit_charge(
pc,
charge_distribution,
bin_min,
bin_size,
is_unity_particle_weight,
)

# Call derivative_charge with the correct types
wakeconvolution.derivative_charge(
charge_distribution,
slopes,
bin_size,
GetNumberDensity,
)

# Convert charge distribution to numpy array and plot it
charge_distribution_np = charge_distribution.to_numpy()
charge_distribution_s_values = np.linspace(
bin_min, bin_max, len(charge_distribution_np)
)
plt.figure()
plt.plot(charge_distribution_s_values, charge_distribution_np)
plt.xlabel("Longitudinal Position s (m)")
plt.ylabel("Charge density")
plt.title("Charge density vs Longitudinal Position")
if save_png:
plt.savefig("density.png")
sim = ImpactX()
sim.load_inputs_file(basepath + "/examples/chicane/input_chicane_csr.in")
sim.n_cell = [16, 24, 32]
sim.slice_step_diagnostics = False

sim.init_grids()
sim.init_beam_distribution_from_inputs()
sim.init_lattice_elements_from_inputs()
sim.evolve()

sim.deposit_charge()

element_has_csr = True
R = 10.35 # Units [m]
sigma_t = 1.9975134930563207e-05

if element_has_csr:
pc = sim.particle_container()
x_min, y_min, t_min, x_max, y_max, t_max = pc.min_and_max_positions()

is_unity_particle_weight = False
GetNumberDensity = True

num_bins = 150
bin_min = t_min
bin_max = t_max
bin_size = (bin_max - bin_min) / (num_bins - 1)

# Create charge_distribution and slopes as PODVector_real_std
charge_distribution = amr.PODVector_real_std(num_bins + 1)
slopes = amr.PODVector_real_std(num_bins)

# Call deposit_charge with the correct type
wakeconvolution.deposit_charge(
pc,
charge_distribution,
bin_min,
bin_size,
is_unity_particle_weight,
)

# Call derivative_charge with the correct types
wakeconvolution.derivative_charge(
charge_distribution,
slopes,
bin_size,
GetNumberDensity,
)

# Convert charge distribution to numpy array and plot it
charge_distribution_np = charge_distribution.to_numpy()
charge_distribution_s_values = np.linspace(
bin_min, bin_max, len(charge_distribution_np)
)
plt.figure()
plt.plot(charge_distribution_s_values, charge_distribution_np)
plt.xlabel("Longitudinal Position s (m)")
plt.ylabel("Charge density")
plt.title("Charge density vs Longitudinal Position")
if save_png:
plt.savefig("density.png")
else:
plt.show()

# Convert slopes to numpy array and plot it
slopes_np = slopes.to_numpy()
slopes_s_values = np.linspace(bin_min, bin_max, len(slopes_np))
plt.figure()
plt.plot(slopes_s_values, slopes_np)
plt.xlabel("Longitudinal Position s (m)")
plt.ylabel("Slopes")
plt.title("Slopes vs Longitudinal Position")
if save_png:
plt.savefig("slopes.png")
else:
plt.show()

# Create wake_function as PODVector_real_std with size 2 * len(slopes)
wake_function = amr.PODVector_real_std(2 * len(slopes))
wake_s_values = np.linspace(bin_min, bin_max, 2 * len(slopes))
for i in range(len(wake_function)):
if i < num_bins:
s = i * bin_size
else:
plt.show()

# Convert slopes to numpy array and plot it
slopes_np = slopes.to_numpy()
slopes_s_values = np.linspace(bin_min, bin_max, len(slopes_np))
plt.figure()
plt.plot(slopes_s_values, slopes_np)
plt.xlabel("Longitudinal Position s (m)")
plt.ylabel("Slopes")
plt.title("Slopes vs Longitudinal Position")
if save_png:
plt.savefig("slopes.png")
else:
plt.show()

# Create wake_function as PODVector_real_std with size 2 * len(slopes)
wake_function = PODVector_real_std(2 * len(slopes))
wake_s_values = np.linspace(bin_min, bin_max, 2 * len(slopes))
for i in range(len(wake_function)):
if i < num_bins:
s = i * bin_size
else:
s = (i - 2 * num_bins) * bin_size
wake_s_values[i] = s
wake_function[i] = wakeconvolution.w_l_csr(s, R, bin_size)

# Convert wake_function to numpy array and plot it
wake_function_np = wake_function.to_numpy()
plt.figure()
plt.plot(wake_s_values, wake_function_np)
plt.xlabel("Longitudinal Position s (m)")
plt.ylabel("Wake Function")
plt.title("Wake Function vs Longitudinal Position")
if save_png:
plt.savefig("wake_function.png")
else:
plt.show()

# Call convolve_fft with the correct types and capture the output
convolved_wakefield = wakeconvolution.convolve_fft(
slopes, wake_function, bin_size
)

# Convert the result to numpy array
convolved_wakefield_np = convolved_wakefield.to_numpy()

# Adjust the s_values to match the length of convolved_wakefield_np
s_values = np.linspace(bin_min, bin_max, len(convolved_wakefield_np))
normalized_s_values = s_values / sigma_t

plt.plot(normalized_s_values, convolved_wakefield_np)
plt.xlabel("Longitudinal Position s/sigma_s")
plt.ylabel("Wakefield (V C/m)")
plt.title("Convolved CSR Wakefield vs Longitudinal Position")
if save_png:
plt.savefig("convolved_wakefield.png")
else:
plt.show()
plt.close("all")
finally:
sim.finalize()
s = (i - 2 * num_bins) * bin_size
wake_s_values[i] = s
wake_function[i] = wakeconvolution.w_l_csr(s, R, bin_size)

# Convert wake_function to numpy array and plot it
wake_function_np = wake_function.to_numpy()
plt.figure()
plt.plot(wake_s_values, wake_function_np)
plt.xlabel("Longitudinal Position s (m)")
plt.ylabel("Wake Function")
plt.title("Wake Function vs Longitudinal Position")
if save_png:
plt.savefig("wake_function.png")
else:
plt.show()

# Call convolve_fft with the correct types and capture the output
convolved_wakefield = wakeconvolution.convolve_fft(
slopes, wake_function, bin_size
)

# Convert the result to numpy array
convolved_wakefield_np = convolved_wakefield.to_numpy()

# Adjust the s_values to match the length of convolved_wakefield_np
s_values = np.linspace(bin_min, bin_max, len(convolved_wakefield_np))
normalized_s_values = s_values / sigma_t

plt.plot(normalized_s_values, convolved_wakefield_np)
plt.xlabel("Longitudinal Position s/sigma_s")
plt.ylabel("Wakefield (V C/m)")
plt.title("Convolved CSR Wakefield vs Longitudinal Position")
if save_png:
plt.savefig("convolved_wakefield.png")
else:
plt.show()
plt.close("all")

sim.finalize()


if __name__ == "__main__":
# Call MPI_Init and MPI_Finalize only once:
if impactx.Config.have_mpi:
if Config.have_mpi:
from mpi4py import MPI # noqa

amr.initialize([])
test_wake()

0 comments on commit be7e1f7

Please sign in to comment.