Skip to content

Commit

Permalink
Add benchmark test.
Browse files Browse the repository at this point in the history
  • Loading branch information
cemitch99 committed Nov 19, 2024
1 parent d9dec4f commit 6723fec
Show file tree
Hide file tree
Showing 5 changed files with 299 additions and 0 deletions.
16 changes: 16 additions & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -843,6 +843,22 @@ add_impactx_test(aperture.py
OFF # no plot script yet
)

# Absorber collimation ########################################################
#
# w/o space charge
add_impactx_test(absorber
examples/aperture/input_absorber.in
ON # ImpactX MPI-parallel
examples/aperture/analysis_absorber.py
OFF # no plot script yet
)
add_impactx_test(absorber.py
examples/aperture/run_absorber.py
OFF # ImpactX MPI-parallel
examples/aperture/analysis_absorber.py
OFF # no plot script yet
)

# Apochromat drift-quad example ##########################################################
#
# w/o space charge
Expand Down
54 changes: 54 additions & 0 deletions examples/aperture/README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -101,3 +101,57 @@ We run the following script to analyze correctness:
.. literalinclude:: analysis_aperture_periodic.py
:language: python3
:caption: You can copy this file from ``examples/aperture/analysis_aperture_periodic.py``.


.. _examples-absorber:

Collimation Using an Absorber
================================

Proton beam undergoing collimation through partial absorption by a rectangular domain.
This test is the exact negative of the previous test, and illustrates the ``absorb`` option of the ``Aperture`` element.

We use a 250 MeV proton beam with a horizontal rms beam size of 1.56 mm and a vertical rms beam size of 2.21 mm.

After a short drift of 0.123, the beam hits a 1 mm x 1.5 mm rectangular structure, resulting in particle loss.

In this test, the initial values of :math:`\sigma_x`, :math:`\sigma_y`, :math:`\sigma_t`, :math:`\epsilon_x`, :math:`\epsilon_y`, and :math:`\epsilon_t` must agree with nomin>
The test fails if:

* any of the final coordinates for the valid (not lost) particles lie inside the absorber boundary or
* any of the lost particles are outside the absorber boundary or
* if the sum of lost and kept particles is not equal to the initial particles or
* if the recorded position :math:`s` for the lost particles does not coincide with the drift distance.


Run
---

This example can be run as a Python script (``python3 run_absorber.py``) or with an app with an input file (``impactx input_absorber.in``).
Each can also be prefixed with an `MPI executor <https://www.mpi-forum.org>`__, such as ``mpiexec -n 4 ...`` or ``srun -n 4 ...``, depending on the system.

.. tab-set::

.. tab-item:: Python Script

.. literalinclude:: run_absorber.py
:language: python3
:caption: You can copy this file from ``examples/aperture/run_absorber.py``.

.. tab-item:: App Input File

.. literalinclude:: input_absorber.in
:language: ini
:caption: You can copy this file from ``examples/aperture/input_absorber.in``.

Analyze
-------

We run the following script to analyze correctness:

.. dropdown:: Script ``analysis_absorber.py``

.. literalinclude:: analysis_absorber.py
:language: python3
:caption: You can copy this file from ``examples/aperture/analysis_absorber.py``.

110 changes: 110 additions & 0 deletions examples/aperture/analysis_absorber.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#

import numpy as np
import openpmd_api as io
from scipy.stats import moment


def get_moments(beam):
"""Calculate standard deviations of beam position & momenta
and emittance values
Returns
-------
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
"""
sigx = moment(beam["position_x"], moment=2) ** 0.5 # variance -> std dev.
sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
sigy = moment(beam["position_y"], moment=2) ** 0.5
sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
sigt = moment(beam["position_t"], moment=2) ** 0.5
sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

epstrms = beam.cov(ddof=0)
emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
final = series.iterations[last_step].particles["beam"].to_df()

series_lost = io.Series("diags/openPMD/particles_lost.h5", io.Access.read_only)
particles_lost = series_lost.iterations[0].particles["beam"].to_df()

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
# we lost particles in apertures
assert num_particles > len(final)
assert num_particles == len(particles_lost) + len(final)

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(initial)
print(f" sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
f" emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0 # ignored
rtol = 1.8 * num_particles**-0.5 # from random sampling of a smooth distribution
print(f" rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
[sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
[
1.559531175539e-3,
2.205510139392e-3,
1.0e-3,
1.0e-6,
2.0e-6,
1.0e-6,
],
rtol=rtol,
atol=atol,
)

# particle-wise comparison against the rectangular aperture boundary
xmax = 1.0e-3
ymax = 1.5e-3

# kept particles
dx = abs(final["position_x"]) - xmax
dy = abs(final["position_y"]) - ymax

print()
print(f" x_max={final['position_x'].max()}")
print(f" x_min={final['position_x'].min()}")
assert np.greater_equal(dx.max(), 0.0)

print(f" y_max={final['position_y'].max()}")
print(f" y_min={final['position_y'].min()}")
assert np.greater_equal(dy.max(), 0.0)

# lost particles
dx = abs(particles_lost["position_x"]) - xmax
dy = abs(particles_lost["position_y"]) - ymax

print()
print(f" x_max={particles_lost['position_x'].max()}")
print(f" x_min={particles_lost['position_x'].min()}")
assert np.less_equal(dx.max(), 0.0)

print(f" y_max={particles_lost['position_y'].max()}")
print(f" y_min={particles_lost['position_y'].min()}")
assert np.less_equal(dy.max(), 0.0)

# check that s is set correctly
lost_at_s = particles_lost["s_lost"]
drift_s = np.ones_like(lost_at_s) * 0.123
assert np.allclose(lost_at_s, drift_s)
50 changes: 50 additions & 0 deletions examples/aperture/input_absorber.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
###############################################################################
# Particle Beam(s)
###############################################################################
beam.npart = 10000
beam.units = static
beam.kin_energy = 250.0
beam.charge = 1.0e-9
beam.particle = proton
beam.distribution = waterbag
beam.lambdaX = 1.559531175539e-3
beam.lambdaY = 2.205510139392e-3
beam.lambdaT = 1.0e-3
beam.lambdaPx = 6.41218345413e-4
beam.lambdaPy = 9.06819680526e-4
beam.lambdaPt = 1.0e-3
beam.muxpx = 0.0
beam.muypy = 0.0
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = monitor drift collimator monitor
lattice.nslice = 1

monitor.type = beam_monitor
monitor.backend = h5

drift.type = drift
drift.ds = 0.123

collimator.type = aperture
collimator.shape = rectangular
collimator.xmax = 1.0e-3
collimator.ymax = 1.5e-3
collimator.action = absorb

###############################################################################
# Algorithms
###############################################################################
algo.particle_shape = 2
algo.space_charge = false


###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = true
diag.backend = h5
69 changes: 69 additions & 0 deletions examples/aperture/run_absorber.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

import amrex.space3d as amr
from impactx import ImpactX, distribution, elements

# work-around for https://github.com/ECP-WarpX/impactx/issues/499
pp_amrex = amr.ParmParse("amrex")
pp_amrex.add("the_arena_is_managed", 1)

sim = ImpactX()

# set numerical parameters and IO control
sim.particle_shape = 2 # B-spline order
sim.space_charge = False
# sim.diagnostics = False # benchmarking
sim.slice_step_diagnostics = True
sim.particle_lost_diagnostics_backend = "h5"

# domain decomposition & space charge mesh
sim.init_grids()

# load a 250 MeV proton beam with an initial
# horizontal rms emittance of 1 um and an
# initial vertical rms emittance of 2 um
kin_energy_MeV = 250.0 # reference energy
bunch_charge_C = 1.0e-9 # used with space charge
npart = 10000 # number of macro particles

# reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(1.0).set_mass_MeV(938.27208816).set_kin_energy_MeV(kin_energy_MeV)

# particle bunch
distr = distribution.Waterbag(
lambdaX=1.559531175539e-3,
lambdaY=2.205510139392e-3,
lambdaT=1.0e-3,
lambdaPx=6.41218345413e-4,
lambdaPy=9.06819680526e-4,
lambdaPt=1.0e-3,
)
sim.add_particles(bunch_charge_C, distr, npart)

# add beam diagnostics
monitor = elements.BeamMonitor("monitor", backend="h5")

# design the accelerator lattice
sim.lattice.extend(
[
monitor,
elements.Drift(name="drift", ds=0.123),
elements.Aperture(
name="collimator", xmax=1.0e-3, ymax=1.5e-3, shape="rectangular", action="absorb"
),
monitor,
]
)

# run simulation
sim.track_particles()

# clean shutdown
sim.finalize()

0 comments on commit 6723fec

Please sign in to comment.