Skip to content

DS3Lab/robustness-intervals-quantum-measurements

Repository files navigation

Toward Reliability in the NISQ Era: Robust Interval Guarantee for Quantum Measurements on Approximate States

This repo contains the code for the paper "Toward Reliability in the NISQ Era: Robust Interval Guarantee for Quantum Measurements on Approximate States" [1]. A tutorial that explains the implementation in Tequila is available here.

Requirements

  • Tequila together with psi4 as chemistry backend (see the Tequila repository for installation).
  • Quantum backends: Qiskit (< 0.25) for simulations with noise and Qulacs for noiseless simulations.

Usage

To compute robustness intervals for eigenvalues of a given Hamiltonian, the first step is to run a variational quantum eigensolver. The second step is to compute required statistics, namely expectation values and fidelities and, if necessary, variances.

For example, to use a noisy VQE with an SPA Ansatz [2] to estimate bond dissociation curves for $H_2(2, 4)$ in a basis-set free approach [3, 4], we need to run the following command

python run_vqe.py --molecule h2 --ansatz spa --noise bitflip-depol --error-rate 0.01 --samples 8192 --backend qiskit

This runs VQE and saves the results in the subdir ./results/dir/to/results. The second step is to compute the statistics. For example, to get the Gramian eigenvalue bound, we run the command

python compute_stats.py --results-dir ./results/dir/to/results --which hamiltonian

Finally, to compute the Gramian eigenvalue intervals, we run the command

python compute_interval.py --results-dir ./results/dir/to/results --method gramian-eigval

For the above example, this results in the following table:

r exact fidelity vqe_energy lower_bound upper_bound
0.50 -1.077562481 0.958205382 -0.988021299 -1.083851669 -0.892573143
0.60 -1.131093394 0.957995880 -1.049706365 -1.134667839 -0.964082683
0.70 -1.149766772 0.958045453 -1.078714705 -1.154566071 -1.003039667
0.75 -1.151648186 0.957997992 -1.084870980 -1.156489296 -1.013617719
0.80 -1.150463131 0.956361844 -1.083803309 -1.154374306 -1.012676374
0.90 -1.141818498 0.957287300 -1.082813293 -1.145940205 -1.019863177
1.00 -1.128477954 0.956343543 -1.074174701 -1.132620953 -1.015699398
1.25 -1.089243435 0.955575508 -1.041665818 -1.092590918 -0.991141821
1.50 -1.053578279 0.953605150 -1.012057922 -1.057875400 -0.966444444
1.75 -1.026226767 0.947645608 -0.986626289 -1.031472964 -0.942610056
2.00 -1.007246702 0.940898351 -0.969707699 -1.014640383 -0.924539724
2.25 -0.994987898 0.938526329 -0.958604338 -1.001223562 -0.915913894
2.50 -0.987402706 0.936911723 -0.951663413 -0.993183626 -0.910199765
2.75 -0.983085755 0.927166048 -0.945083506 -0.989858075 -0.900383804

The script ./analyze/make_figure_gramian_eigenvalue_bound.py can be used to generate the corresponding figure:

References

[1] Maurice Weber, Abhinav Anand, Alba Cervera-Lierta, Jakob S. Kottmann, Thi Ha Kyaw, Bo Li, Alán Aspuru-Guzik, Ce Zhang and Zhikuan Zhao. "Toward Reliability in the NISQ Era: Robust Interval Guarantee for Quantum Measurements on Approximate States", arXiv:2110.09793 (2021).

[2] Jakob S. Kottmann, Alán Aspuru-Guzik. "Optimized Low-Depth Quantum Circuits for Molecular Electronic Structure using a Separable Pair Approximation", arXiv:2105.03836 (2021).

[3] Jakob S. Kottmann, Philipp Schleich, Teresa Tamayo-Mendoza, and Alán Aspuru-Guzik. "Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach", J. Phys. Chem. Lett.12, 663 (2021).

[4] Jakob S. Kottmann, Florian A. Bischoff, and Edward F. Valeev. "Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller–Plesset energy", J. Chem. Phys. 152, 074105 (2020).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published