In this project you can find an analysis of the dynamics of the disease from mathematical modeling in Python.
project/
* ├── data/
* │ ├── raw
* │ | ├── Data.csv
* | | └── MUestimates_all_locations_1.xlsx
* │ └── processed
* ├── docs/
* | ├── Covid_col.bib
* | ├── report.html
* | └── report.Rmd
* ├── figs/
* | ├── fitting_model.png
* | ├── inference_parameters.png
* | ├── inference_vaccine.png
* | ├── state_variables_unvaccines.png
* | ├── state_variables_vaccines.png
* | └── model.png
* ├── functions/
* | ├── adjust_cases.py
* | ├── model_agg.py
* | ├── utils_inference.py
* | └── utils_plotting.py
* ├── outputs/
* ├── Python/
* | ├── 01_inference_unvaccine_model.py
* | ├── 02_inference_vaccine_model.py
* | └── 03_plot_samples.py
* └── README.md
In order to reproduce the results presented in the project report, located in the docs folder, first you can clone the repository or download it, then run the file "01_inference_unvaccined_model.py", it takes less than an hour and create the results for the unvaccinated scenario in the outputs folder, then the file "02_inference_vaccined_model.py" generate the results for the vaccinated scenario in the same folder and finally the file "03_plot_samples.py" creates the figures in the figs folder.
- tqdm
- Numpy
- Scipy
- Pandas
- Matplotlib
You need more than 2Gb to store the results.