Skip to content

Use OT metamodels trough sklearn estimator API

License

LGPL-3.0, GPL-3.0 licenses found

Licenses found

LGPL-3.0
COPYING.LESSER
GPL-3.0
COPYING
Notifications You must be signed in to change notification settings

CNR-Engineering/otsklearn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

https://travis-ci.org/openturns/otsklearn.svg?branch=master

otsklearn

Simple module to use OT metamodels with the scikit-learn estimator API (fit/predict) Currently it's more a proof of concept, not ready for production use.

Examples

>>> from otsklearn import FunctionalChaos
>>> from sklearn import datasets
>>> from sklearn.model_selection import GridSearchCV
>>> dataset = datasets.load_iris()
>>> parameters={'degree':[2,3,4]}
>>> estimator = FunctionalChaos()
>>> print(estimator.get_params())
>>> clf = GridSearchCV(estimator, parameters, scoring='r2')
>>> clf.fit(dataset.data, dataset.target.reshape(-1,1))
>>> print(clf.best_estimator_)

About

Use OT metamodels trough sklearn estimator API

Resources

License

LGPL-3.0, GPL-3.0 licenses found

Licenses found

LGPL-3.0
COPYING.LESSER
GPL-3.0
COPYING

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%