Skip to content

Commit

Permalink
Module 6 notes in progress
Browse files Browse the repository at this point in the history
  • Loading branch information
AustinTSchaffer committed Feb 18, 2024
1 parent b4f26b9 commit 8fd41af
Show file tree
Hide file tree
Showing 6 changed files with 258 additions and 0 deletions.
258 changes: 258 additions & 0 deletions OMSCS/Courses/AI/Module_06/Module 6 - Bayes Nets.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
---
tags:
- OMSCS
- AI
- Probability
- Bayes
---
# Module 6 - Bayes Nets

## Bayes Rule Graphically
![[Pasted image 20240217144613.png]]

Diagnostic Reasoning
- $P(A | B)$
- $P(A|\neg B)$

You need 3 parameters to specify a bayes network
- $P(A)$
- $P(B|A)$
- $P(B|\neg A)$

## Bayes Rule Refresher
$$
P(A|B)=\frac{P(B|A)P(A)}{P(B)}
$$

$$
P(\neg A | B) = \frac{P(B|\neg A)P(\neg A)}{P(B)}
$$

$$
P(A|B)+P(\neg A|B)=1
$$

- $P'(A|B)=P(B|A)P(A)$
- $P'(\neg A|B)=P(B|\neg A)P(\neg A)$
- For some normalizer value $\eta$
- $P(A|B)=\eta P'(A|B)$
- $P(\neg A|B)=\eta P'(\neg A|B)$
- $\eta=(P'(A|B)+P'(\neg A|B))^{-1}$
- The advantage of using these pseudo probabilities is that you don't have to calculate $P(B)$ directly, which can be pretty complicated in some problems.

### 2-Test Cancer Example
![[Pasted image 20240217150019.png]]
- $P(C)=0.01$
- $P(\neg C)=0.99$
- $P(T_x=+|C)=0.9$
- $P(T_x=-|C)=0.1$
- $P(T_x=-|\neg C)=0.8$
- $P(T_x=+|\neg C)=0.2$
- $P(C|T_1=+, T_2=+)=?$

Working out
- Calculating $P(++|C)$
- $P(T_1=+,T_2=+|C)=P(++|C)$
- $P(++|C)=P(T_1=+|C)P(T_2=+|C)=0.9^2$
- $P(++|C)=0.81$
- Calculating $P(++|\neg C)$
- $P(T_1=+,T_2=+|\neg C)=P(++|\neg C)$
- $P(++|\neg C)=P(T_1=+|\neg C)P(T_2=+|\neg C)=0.2^2$
- $P(++|\neg C)=0.04$
- $P(C)=0.01$
- $P(++)$ $\leftarrow$ we can avoid calculating this
- Calculating $P'(C|++)$
- $P'(C|++)=P(++|C)P(C)$
- $P'(C|++)=(0.81)(0.01)$
- $P'(C|++)=0.0081$
- Calculating $P'(\neg C|++)$
- $P'(\neg C|++)=P(++|\neg C)P(\neg C)$
- $P'(\neg C|++)=(0.04)(0.99)$
- $P'(\neg C|++)=0.0396$
- $\eta = (0.0081+0.0396)^{-1} = 20.9643...$
- Calculating $P(C|++)$
- $P(C|++)=\eta P'(C|++)$
- $P(C|++)=(20.9643...)(0.0081)$
- $P(C|++)=0.1698$

I initially got the wrong answer for this due to using the wrong value of $P(T_1=+|\neg C)$ in the "Calculating $P(++|\neg C)$" step. I used 0.1 instead of 0.2, which multiplied the errors downstream.

| | prior | + | + | P' | $P(C\|++)$ |
| ---- | ---- | ---- | ---- | ---- | ---- |
| $C$ | 0.01 | 0.9 | 0.9 | 0.0081 | 0.1698 |
| $\neg C$ | 0.99 | 0.2 | 0.2 | 0.0396 | 0.8301 |
### 2-Test Cancer Example 2

- $P(C)=0.01$
- $P(\neg C)=0.99$
- $P(T_x=+|C)=0.9$
- $P(T_x=-|C)=0.1$
- $P(T_x=-|\neg C)=0.8$
- $P(T_x=+|\neg C)=0.2$
- $P(C|T_1=+, T_2=-)=?$

Working out
- Calculating $P(+-|C)$
- $P(T_1=+,T_2=-|C)=P(+-|C)$
- $P(+-|C)=P(T_1=+|C)P(T_2=-|C)=(0.9)(0.1)$
- $P(+-|C)=0.09$
- Calculating $P(+-|\neg C)$
- $P(T_1=+,T_2=-|\neg C)=P(+-|\neg C)$
- $P(+-|\neg C)=P(T_1=+|\neg C)P(T_2=-|\neg C)=(0.8)(0.2)$
- $P(+-|\neg C)=0.16$
- $P(C)=0.01$
- $P(+-)$ $\leftarrow$ we can avoid calculating this
- Calculating $P'(C|+-)$
- $P'(C|+-)=P(+-|C)P(C)$
- $P'(C|+-)=(0.09)(0.01)$
- $P'(C|++)=0.0009$
- Calculating $P'(\neg C|+-)$
- $P'(\neg C|+-)=P(+-|\neg C)P(\neg C)$
- $P'(\neg C|+-)=(0.16)(0.99)$
- $P'(\neg C|+-)=0.1584$
- $\eta = (0.1584+0.0009)^{-1} = 6.2774...$
- Calculating $P(C|+-)$
- $P(C|+-)=\eta P'(C|+-)$
- $P(C|+-)=(6.2774...)(0.0009)$
- $P(C|++)=0.005649...$

| | prior | + | - | P' | $P(C\|++)$ |
| ---- | ---- | ---- | ---- | ---- | ---- |
| $C$ | 0.01 | 0.9 | 0.1 | 0.0009 | 0.0056 |
| $\neg C$ | 0.99 | 0.2 | 0.8 | 0.1584 | 0.9943 |

## Conditional Independence
Useful assumptions in the examples above.
- Both $T_x$ variables are conditionally independent
- $P(T_2|C,T_1)=P(T_2|C)$ is one way of specifying conditional independence.

![[Pasted image 20240217153405.png]]

$B \perp C \space | \space A \ne B \perp C$

> Getting a positive test result about cancer (B) increases the probability of having cancer (A) above the prior probability for A, which changes the probability that another test will result in a positive (C).
### Cancer Example 3

- $P(C)=0.01$
- $P(\neg C)=0.99$
- $P(T_x=+|C)=0.9$
- $P(T_x=-|C)=0.1$
- $P(T_x=-|\neg C)=0.8$
- $P(T_x=+|\neg C)=0.2$
- $P(T_2=+ \space | \space T_1=+)=?$

Ok so the theory here is that by having a positive result for $T_1$, that raises the probability of $C$ above it's prior value, which affects the calculations for $T_2$.

> For this problem, we want to apply the principle of total probability.
- $P(T_2=+ \space | \space T_1=+) = P(+_2 | +_1)$
- $P(+_2 | +_1)=P(+_2|+_1, C)P(C|+_1)+P(+_2|+_1, \neg C)P(\neg C | +_1)$
- $P(C|+_1)=0.043$
- $P(\neg C|+_1)=1-0.043=0.957$
- Thanks to conditional independence
- $P(+_2|+_1, C)=P(+_2|C)=0.9$
- $P(+_2|+_1, \neg C)=P(+_2|\neg C)=0.2$
- $P(+_2 | +_1)=(0.9)(0.043)+(0.2)(0.957)$
- $P(+_2 | +_1)=0.2301$
- Baseline: $P(+_x)=0.207$

## Absolute and Conditional Independence
- $A \perp B$ - means that A and B have "absolute independence"
- $A \perp B \space | \space C$ - means that A and B are "conditionally independent" on C
- Absolute independence does not imply conditional independence.
- Conditional independence does not imply absolute independence.

![[Pasted image 20240217160022.png]]

- $P(R | S) = P(R)$
- We don't know anything about $H$, so $S$ has no effect on $R$.

### Quiz 1

- $P(R|H,S)=?$

> Using Bayes Rule we can transform this question.
$$
P(R|H,S)=\frac{P(H|R,S)P(R|S)}{P(H|S)}
$$

Where the hell did $P(H|S)$ come from?

> thanks to the rules of conditional independence: $P(R|S)=P(R)$
>
> thanks to the rules of total probability:
> $P(H|S)=P(H|R,S)P(R)+P(H|\neg R,S)P(\neg R)$
>
> Substituting these values in to the equation above.
$$
\frac{P(H|R,S)P(R|S)}{P(H|S)}=\frac{P(H|R,S)P(R)}{P(H|R,S)P(R)+P(H|\neg R,S)P(\neg R)}
$$

### Quiz 2
- $P(R|H)=?$

Using bayes theorem

$$
P(R|H)=\frac{P(H|R)P(R)}{P(H)}
$$

- $P(H|R)$
- $= P(H|\neg S,R)P(\neg S) + P(H|S,R)P(S)$
- $=(0.9)(0.3)+(1)(0.7)$
- $=0.97$
- $P(R) = 0.01$
- $P(H)$
- $= P(H|S,R)P(S, R)$
- $=P(H|S,R)P(S)P(R)$
- $=(1)(0.7)(0.01)$
- $=0.007$
- $+ \space P(H|\neg S, R)P(\neg S, R)$
- $=P(H|\neg S, R)P(\neg S)P(R)$
- $= (0.9)(0.3)(0.01)$
- $=0.0027$
- $+ \space P(H|S,\neg R)P(S, \neg R)$
- $=P(H|S,\neg R)P(S)P(\neg R)$
- $=(0.7)(0.7)(0.99)$
- $=0.4851$
- $+ \space P(H|\neg S, \neg R)P(\neg S, \neg R)$
- $=P(H|\neg S, \neg R)P(\neg S)P(\neg R)$
- $=(0.1)(0.3)(0.99)$
- $=0.0297$
- $=0.007+0.0027+0.4851+0.0297$
- $=0.5245$
- $\frac{P(H|R)P(R)}{P(H)}$
- $=(0.97)(0.01)(0.5245)^{-1}$
- $=(0.97)(0.01)(1.9065...)$
- $=0.01849...$

Using the "pseudo-probabilities" method

$$
P(R|H)=\frac{P(H|R)P(R)}{P(H|R)P(R)+P(H|\neg R)P(\neg R)}
$$

- $P(H|R)$
- $= P(H|\neg S, R)P(\neg S) + P(H|S,R)P(S)$
- $=(0.9)(0.3)+(1)(0.7)$
- $=0.97$
- $P(H|\neg R)$
- $= P(H|\neg S, \neg R)P(\neg S) + P(H|S,\neg R)P(S)$
- $= (0.1)(0.3) + (0.7)(0.7)$
- $= 0.03+0.49$
- $=0.52$
- $P'(R|H)=P(H|R)P(R)$
- $=(0.97)(0.01)$
- $=0.0097$
- $P'(\neg R|H)=P(H|\neg R)P(\neg R)$
- $=(0.52)(0.99)$
- $=0.5148$
- $\eta = (P'(R|H)+P'(\neg R|H))^{-1}$
- $=(0.0097+0.5148)^{-1}$
- $=0.5245^{-1}$
- $=1.9065...$
- $P(R|H)=\eta P'(R|H)$
- $=(1.9065...)(0.0097)$
- $=0.01849...$
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 8fd41af

Please sign in to comment.