-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b4f26b9
commit 8fd41af
Showing
6 changed files
with
258 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
--- | ||
tags: | ||
- OMSCS | ||
- AI | ||
- Probability | ||
- Bayes | ||
--- | ||
# Module 6 - Bayes Nets | ||
|
||
## Bayes Rule Graphically | ||
![[Pasted image 20240217144613.png]] | ||
|
||
Diagnostic Reasoning | ||
- $P(A | B)$ | ||
- $P(A|\neg B)$ | ||
|
||
You need 3 parameters to specify a bayes network | ||
- $P(A)$ | ||
- $P(B|A)$ | ||
- $P(B|\neg A)$ | ||
|
||
## Bayes Rule Refresher | ||
$$ | ||
P(A|B)=\frac{P(B|A)P(A)}{P(B)} | ||
$$ | ||
|
||
$$ | ||
P(\neg A | B) = \frac{P(B|\neg A)P(\neg A)}{P(B)} | ||
$$ | ||
|
||
$$ | ||
P(A|B)+P(\neg A|B)=1 | ||
$$ | ||
|
||
- $P'(A|B)=P(B|A)P(A)$ | ||
- $P'(\neg A|B)=P(B|\neg A)P(\neg A)$ | ||
- For some normalizer value $\eta$ | ||
- $P(A|B)=\eta P'(A|B)$ | ||
- $P(\neg A|B)=\eta P'(\neg A|B)$ | ||
- $\eta=(P'(A|B)+P'(\neg A|B))^{-1}$ | ||
- The advantage of using these pseudo probabilities is that you don't have to calculate $P(B)$ directly, which can be pretty complicated in some problems. | ||
|
||
### 2-Test Cancer Example | ||
![[Pasted image 20240217150019.png]] | ||
- $P(C)=0.01$ | ||
- $P(\neg C)=0.99$ | ||
- $P(T_x=+|C)=0.9$ | ||
- $P(T_x=-|C)=0.1$ | ||
- $P(T_x=-|\neg C)=0.8$ | ||
- $P(T_x=+|\neg C)=0.2$ | ||
- $P(C|T_1=+, T_2=+)=?$ | ||
|
||
Working out | ||
- Calculating $P(++|C)$ | ||
- $P(T_1=+,T_2=+|C)=P(++|C)$ | ||
- $P(++|C)=P(T_1=+|C)P(T_2=+|C)=0.9^2$ | ||
- $P(++|C)=0.81$ | ||
- Calculating $P(++|\neg C)$ | ||
- $P(T_1=+,T_2=+|\neg C)=P(++|\neg C)$ | ||
- $P(++|\neg C)=P(T_1=+|\neg C)P(T_2=+|\neg C)=0.2^2$ | ||
- $P(++|\neg C)=0.04$ | ||
- $P(C)=0.01$ | ||
- $P(++)$ $\leftarrow$ we can avoid calculating this | ||
- Calculating $P'(C|++)$ | ||
- $P'(C|++)=P(++|C)P(C)$ | ||
- $P'(C|++)=(0.81)(0.01)$ | ||
- $P'(C|++)=0.0081$ | ||
- Calculating $P'(\neg C|++)$ | ||
- $P'(\neg C|++)=P(++|\neg C)P(\neg C)$ | ||
- $P'(\neg C|++)=(0.04)(0.99)$ | ||
- $P'(\neg C|++)=0.0396$ | ||
- $\eta = (0.0081+0.0396)^{-1} = 20.9643...$ | ||
- Calculating $P(C|++)$ | ||
- $P(C|++)=\eta P'(C|++)$ | ||
- $P(C|++)=(20.9643...)(0.0081)$ | ||
- $P(C|++)=0.1698$ | ||
|
||
I initially got the wrong answer for this due to using the wrong value of $P(T_1=+|\neg C)$ in the "Calculating $P(++|\neg C)$" step. I used 0.1 instead of 0.2, which multiplied the errors downstream. | ||
|
||
| | prior | + | + | P' | $P(C\|++)$ | | ||
| ---- | ---- | ---- | ---- | ---- | ---- | | ||
| $C$ | 0.01 | 0.9 | 0.9 | 0.0081 | 0.1698 | | ||
| $\neg C$ | 0.99 | 0.2 | 0.2 | 0.0396 | 0.8301 | | ||
### 2-Test Cancer Example 2 | ||
|
||
- $P(C)=0.01$ | ||
- $P(\neg C)=0.99$ | ||
- $P(T_x=+|C)=0.9$ | ||
- $P(T_x=-|C)=0.1$ | ||
- $P(T_x=-|\neg C)=0.8$ | ||
- $P(T_x=+|\neg C)=0.2$ | ||
- $P(C|T_1=+, T_2=-)=?$ | ||
|
||
Working out | ||
- Calculating $P(+-|C)$ | ||
- $P(T_1=+,T_2=-|C)=P(+-|C)$ | ||
- $P(+-|C)=P(T_1=+|C)P(T_2=-|C)=(0.9)(0.1)$ | ||
- $P(+-|C)=0.09$ | ||
- Calculating $P(+-|\neg C)$ | ||
- $P(T_1=+,T_2=-|\neg C)=P(+-|\neg C)$ | ||
- $P(+-|\neg C)=P(T_1=+|\neg C)P(T_2=-|\neg C)=(0.8)(0.2)$ | ||
- $P(+-|\neg C)=0.16$ | ||
- $P(C)=0.01$ | ||
- $P(+-)$ $\leftarrow$ we can avoid calculating this | ||
- Calculating $P'(C|+-)$ | ||
- $P'(C|+-)=P(+-|C)P(C)$ | ||
- $P'(C|+-)=(0.09)(0.01)$ | ||
- $P'(C|++)=0.0009$ | ||
- Calculating $P'(\neg C|+-)$ | ||
- $P'(\neg C|+-)=P(+-|\neg C)P(\neg C)$ | ||
- $P'(\neg C|+-)=(0.16)(0.99)$ | ||
- $P'(\neg C|+-)=0.1584$ | ||
- $\eta = (0.1584+0.0009)^{-1} = 6.2774...$ | ||
- Calculating $P(C|+-)$ | ||
- $P(C|+-)=\eta P'(C|+-)$ | ||
- $P(C|+-)=(6.2774...)(0.0009)$ | ||
- $P(C|++)=0.005649...$ | ||
|
||
| | prior | + | - | P' | $P(C\|++)$ | | ||
| ---- | ---- | ---- | ---- | ---- | ---- | | ||
| $C$ | 0.01 | 0.9 | 0.1 | 0.0009 | 0.0056 | | ||
| $\neg C$ | 0.99 | 0.2 | 0.8 | 0.1584 | 0.9943 | | ||
|
||
## Conditional Independence | ||
Useful assumptions in the examples above. | ||
- Both $T_x$ variables are conditionally independent | ||
- $P(T_2|C,T_1)=P(T_2|C)$ is one way of specifying conditional independence. | ||
|
||
![[Pasted image 20240217153405.png]] | ||
|
||
$B \perp C \space | \space A \ne B \perp C$ | ||
|
||
> Getting a positive test result about cancer (B) increases the probability of having cancer (A) above the prior probability for A, which changes the probability that another test will result in a positive (C). | ||
### Cancer Example 3 | ||
|
||
- $P(C)=0.01$ | ||
- $P(\neg C)=0.99$ | ||
- $P(T_x=+|C)=0.9$ | ||
- $P(T_x=-|C)=0.1$ | ||
- $P(T_x=-|\neg C)=0.8$ | ||
- $P(T_x=+|\neg C)=0.2$ | ||
- $P(T_2=+ \space | \space T_1=+)=?$ | ||
|
||
Ok so the theory here is that by having a positive result for $T_1$, that raises the probability of $C$ above it's prior value, which affects the calculations for $T_2$. | ||
|
||
> For this problem, we want to apply the principle of total probability. | ||
- $P(T_2=+ \space | \space T_1=+) = P(+_2 | +_1)$ | ||
- $P(+_2 | +_1)=P(+_2|+_1, C)P(C|+_1)+P(+_2|+_1, \neg C)P(\neg C | +_1)$ | ||
- $P(C|+_1)=0.043$ | ||
- $P(\neg C|+_1)=1-0.043=0.957$ | ||
- Thanks to conditional independence | ||
- $P(+_2|+_1, C)=P(+_2|C)=0.9$ | ||
- $P(+_2|+_1, \neg C)=P(+_2|\neg C)=0.2$ | ||
- $P(+_2 | +_1)=(0.9)(0.043)+(0.2)(0.957)$ | ||
- $P(+_2 | +_1)=0.2301$ | ||
- Baseline: $P(+_x)=0.207$ | ||
|
||
## Absolute and Conditional Independence | ||
- $A \perp B$ - means that A and B have "absolute independence" | ||
- $A \perp B \space | \space C$ - means that A and B are "conditionally independent" on C | ||
- Absolute independence does not imply conditional independence. | ||
- Conditional independence does not imply absolute independence. | ||
|
||
![[Pasted image 20240217160022.png]] | ||
|
||
- $P(R | S) = P(R)$ | ||
- We don't know anything about $H$, so $S$ has no effect on $R$. | ||
|
||
### Quiz 1 | ||
|
||
- $P(R|H,S)=?$ | ||
|
||
> Using Bayes Rule we can transform this question. | ||
$$ | ||
P(R|H,S)=\frac{P(H|R,S)P(R|S)}{P(H|S)} | ||
$$ | ||
|
||
Where the hell did $P(H|S)$ come from? | ||
|
||
> thanks to the rules of conditional independence: $P(R|S)=P(R)$ | ||
> | ||
> thanks to the rules of total probability: | ||
> $P(H|S)=P(H|R,S)P(R)+P(H|\neg R,S)P(\neg R)$ | ||
> | ||
> Substituting these values in to the equation above. | ||
$$ | ||
\frac{P(H|R,S)P(R|S)}{P(H|S)}=\frac{P(H|R,S)P(R)}{P(H|R,S)P(R)+P(H|\neg R,S)P(\neg R)} | ||
$$ | ||
|
||
### Quiz 2 | ||
- $P(R|H)=?$ | ||
|
||
Using bayes theorem | ||
|
||
$$ | ||
P(R|H)=\frac{P(H|R)P(R)}{P(H)} | ||
$$ | ||
|
||
- $P(H|R)$ | ||
- $= P(H|\neg S,R)P(\neg S) + P(H|S,R)P(S)$ | ||
- $=(0.9)(0.3)+(1)(0.7)$ | ||
- $=0.97$ | ||
- $P(R) = 0.01$ | ||
- $P(H)$ | ||
- $= P(H|S,R)P(S, R)$ | ||
- $=P(H|S,R)P(S)P(R)$ | ||
- $=(1)(0.7)(0.01)$ | ||
- $=0.007$ | ||
- $+ \space P(H|\neg S, R)P(\neg S, R)$ | ||
- $=P(H|\neg S, R)P(\neg S)P(R)$ | ||
- $= (0.9)(0.3)(0.01)$ | ||
- $=0.0027$ | ||
- $+ \space P(H|S,\neg R)P(S, \neg R)$ | ||
- $=P(H|S,\neg R)P(S)P(\neg R)$ | ||
- $=(0.7)(0.7)(0.99)$ | ||
- $=0.4851$ | ||
- $+ \space P(H|\neg S, \neg R)P(\neg S, \neg R)$ | ||
- $=P(H|\neg S, \neg R)P(\neg S)P(\neg R)$ | ||
- $=(0.1)(0.3)(0.99)$ | ||
- $=0.0297$ | ||
- $=0.007+0.0027+0.4851+0.0297$ | ||
- $=0.5245$ | ||
- $\frac{P(H|R)P(R)}{P(H)}$ | ||
- $=(0.97)(0.01)(0.5245)^{-1}$ | ||
- $=(0.97)(0.01)(1.9065...)$ | ||
- $=0.01849...$ | ||
|
||
Using the "pseudo-probabilities" method | ||
|
||
$$ | ||
P(R|H)=\frac{P(H|R)P(R)}{P(H|R)P(R)+P(H|\neg R)P(\neg R)} | ||
$$ | ||
|
||
- $P(H|R)$ | ||
- $= P(H|\neg S, R)P(\neg S) + P(H|S,R)P(S)$ | ||
- $=(0.9)(0.3)+(1)(0.7)$ | ||
- $=0.97$ | ||
- $P(H|\neg R)$ | ||
- $= P(H|\neg S, \neg R)P(\neg S) + P(H|S,\neg R)P(S)$ | ||
- $= (0.1)(0.3) + (0.7)(0.7)$ | ||
- $= 0.03+0.49$ | ||
- $=0.52$ | ||
- $P'(R|H)=P(H|R)P(R)$ | ||
- $=(0.97)(0.01)$ | ||
- $=0.0097$ | ||
- $P'(\neg R|H)=P(H|\neg R)P(\neg R)$ | ||
- $=(0.52)(0.99)$ | ||
- $=0.5148$ | ||
- $\eta = (P'(R|H)+P'(\neg R|H))^{-1}$ | ||
- $=(0.0097+0.5148)^{-1}$ | ||
- $=0.5245^{-1}$ | ||
- $=1.9065...$ | ||
- $P(R|H)=\eta P'(R|H)$ | ||
- $=(1.9065...)(0.0097)$ | ||
- $=0.01849...$ |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.