Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Update broken imports on tracing and analysis example #2672

Merged
merged 1 commit into from
Mar 22, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 23 additions & 25 deletions tutorials/llm_application_tracing_evaluating_and_analysis.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -46,26 +46,32 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install -qq \"arize-phoenix[experimental,llama-index]\" \"openai>=1\" gcsfs nest_asyncio\n",
"\n",
"# Import Statements\n",
"!pip install -qq \"arize-phoenix[evals,llama-index]\" \"openai>=1\" gcsfs nest_asyncio llama-index-llms-openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"from typing import List, cast\n",
"from urllib.request import urlopen\n",
"\n",
"import pandas as pd\n",
"import phoenix as px\n",
"import requests\n",
"from gcsfs import GCSFileSystem\n",
"from llama_index import (\n",
"from llama_index.core import (\n",
" ServiceContext,\n",
" StorageContext,\n",
" load_index_from_storage,\n",
" set_global_handler,\n",
")\n",
"from llama_index.embeddings import OpenAIEmbedding\n",
"from llama_index.graph_stores.simple import SimpleGraphStore\n",
"from llama_index.llms import OpenAI\n",
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"from llama_index.core.graph_stores import SimpleGraphStore\n",
"from llama_index.llms.openai import OpenAI\n",
"from phoenix import TraceDataset\n",
"from phoenix.trace import DocumentEvaluations, SpanEvaluations\n",
"from phoenix.trace.utils import json_lines_to_df\n",
Expand All @@ -85,18 +91,10 @@
"qa_correctness_eval_url = \"https://storage.googleapis.com/arize-phoenix-assets/datasets/unstructured/llm/context-retrieval/qa_correctness_eval.parquet\"\n",
"retrieved_documents_eval_url = \"https://storage.googleapis.com/arize-phoenix-assets/datasets/unstructured/llm/context-retrieval/retrieved_documents_eval.parquet\"\n",
"\n",
"response = requests.get(trace_jsonl_url)\n",
"\n",
"if response.status_code == 200:\n",
" with open(\"trace.jsonl\", \"wb\") as f:\n",
" f.write(response.content)\n",
" json_lines = []\n",
" with open(\"trace.jsonl\", \"r\") as f:\n",
" json_lines = cast(List[str], f.readlines())\n",
" trace_ds = TraceDataset(json_lines_to_df(json_lines))\n",
" px.launch_app(trace=trace_ds)\n",
"else:\n",
" print(f\"Failed to download the file. Status code: {response.status_code}\")\n",
"with urlopen(trace_jsonl_url) as response:\n",
" lines = [line.decode(\"utf-8\") for line in response.readlines()]\n",
"trace_ds = TraceDataset(json_lines_to_df(lines))\n",
"px.launch_app(trace=trace_ds)\n",
"\n",
"hallucination_eval_df = pd.read_parquet(hallucination_eval_url)\n",
"qa_correctness_eval_df = pd.read_parquet(qa_correctness_eval_url)\n",
Expand Down Expand Up @@ -244,7 +242,7 @@
"# Generating the Hallucination & Q&A Eval\n",
"\n",
"import nest_asyncio\n",
"from phoenix.experimental.evals import (\n",
"from phoenix.evals import (\n",
" HALLUCINATION_PROMPT_RAILS_MAP,\n",
" HALLUCINATION_PROMPT_TEMPLATE,\n",
" QA_PROMPT_RAILS_MAP,\n",
Expand All @@ -258,7 +256,7 @@
"# Creating Hallucination Eval which checks if the application hallucinated\n",
"hallucination_eval = llm_classify(\n",
" dataframe=queries_df,\n",
" model=OpenAIModel(\"gpt-4\", temperature=0.0),\n",
" model=OpenAIModel(model=\"gpt-4\", temperature=0.0),\n",
" template=HALLUCINATION_PROMPT_TEMPLATE,\n",
" rails=list(HALLUCINATION_PROMPT_RAILS_MAP.values()),\n",
" provide_explanation=True, # Makes the LLM explain its reasoning\n",
Expand All @@ -271,7 +269,7 @@
"# Creating Q&A Eval which checks if the application answered the question correctly\n",
"qa_correctness_eval = llm_classify(\n",
" dataframe=queries_df,\n",
" model=OpenAIModel(\"gpt-4\", temperature=0.0),\n",
" model=OpenAIModel(model=\"gpt-4\", temperature=0.0),\n",
" template=QA_PROMPT_TEMPLATE,\n",
" rails=list(QA_PROMPT_RAILS_MAP.values()),\n",
" provide_explanation=True, # Makes the LLM explain its reasoning\n",
Expand Down Expand Up @@ -326,7 +324,7 @@
"source": [
"# Generating Retrieval Relevance Eval\n",
"\n",
"from phoenix.experimental.evals import (\n",
"from phoenix.evals import (\n",
" RAG_RELEVANCY_PROMPT_RAILS_MAP,\n",
" RAG_RELEVANCY_PROMPT_TEMPLATE,\n",
" OpenAIModel,\n",
Expand All @@ -335,7 +333,7 @@
"\n",
"retrieved_documents_eval = llm_classify(\n",
" dataframe=retrieved_documents_df,\n",
" model=OpenAIModel(\"gpt-4\", temperature=0.0),\n",
" model=OpenAIModel(model=\"gpt-4\", temperature=0.0),\n",
" template=RAG_RELEVANCY_PROMPT_TEMPLATE,\n",
" rails=list(RAG_RELEVANCY_PROMPT_RAILS_MAP.values()),\n",
" provide_explanation=True,\n",
Expand Down
Loading