Skip to content

JavaScript前向神经网络(推理)和反向传播(训练)的实现

License

Notifications You must be signed in to change notification settings

AlloyTeam/netural

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Netural

JavaScript的前向神经网络(推理)和反向传播(训练)的实现。

安装

npm install netural

Hello Netural

import netural from 'netural'

const network = new netural.Network({
  framework: [2, 2, 2],
  layers: [
    // 支持 SIGMOID、SOFTMAX 和 RELU 三种激活函数
    { w: [0.15, 0.20, 0.25, 0.30], b: 0.35, type: netural.SIGMOID },
    { w: [0.40, 0.45, 0.50, 0.55], b: 0.60, type: netural.SIGMOID }
  ],
  input: [0.05, 0.10]
})

// output: [0.010000000002984098, 0.9899999999997068]
network.train([0.01, 0.99], 300000)

分类示例

分类过程可视化如下:

a 和 b 数据集:

const data = {
  a: [{"x":-6,"y":60},{"x":13,"y":72},{"x":33,"y":83},{"x":54,"y":83},{"x":71,"y":65},{"x":78,"y":41},{"x":79,"y":13},{"x":75,"y":-11},{"x":65,"y":-41},{"x":53,"y":-63},{"x":36,"y":-80},{"x":15,"y":-93},{"x":-6,"y":-101},{"x":-23,"y":-100},{"x":-44,"y":-74},{"x":-63,"y":-51},{"x":-79,"y":-27},{"x":-91,"y":-3},{"x":-104,"y":27},{"x":-106,"y":43},{"x":-102,"y":71},{"x":-83,"y":83},{"x":-71,"y":88},{"x":-45,"y":91},{"x":-26,"y":77},{"x":-15,"y":67},{"x":-66,"y":51},{"x":-55,"y":15},{"x":-25,"y":22},{"x":32,"y":36},{"x":50,"y":39},{"x":38,"y":-10},{"x":20,"y":-22},{"x":-14,"y":4},{"x":10,"y":-1},{"x":-22,"y":-22},{"x":-34,"y":-48},{"x":-7,"y":-62},{"x":20,"y":-50},{"x":43,"y":-34},{"x":-4,"y":33},{"x":-42,"y":54},{"x":38,"y":59},{"x":-1,"y":-37},{"x":-54,"y":-12},{"x":0,"y":0},{"x":0,"y":0},{"x":0,"y":0},{"x":40,"y":95}],
  b: [{"x":158,"y":126},{"x":160,"y":75},{"x":160,"y":2},{"x":158,"y":-26},{"x":147,"y":-116},{"x":127,"y":-126},{"x":67,"y":-148},{"x":6,"y":-155},{"x":-62,"y":-148},{"x":-103,"y":-137},{"x":-128,"y":-96},{"x":-150,"y":-3},{"x":-159,"y":93},{"x":-157,"y":147},{"x":-103,"y":158},{"x":9,"y":179},{"x":82,"y":187},{"x":121,"y":173},{"x":140,"y":160},{"x":28,"y":152},{"x":-38,"y":156},{"x":-88,"y":144},{"x":-118,"y":124},{"x":-174,"y":11},{"x":-155,"y":-84},{"x":-150,"y":-128},{"x":-130,"y":-157},{"x":3,"y":-178},{"x":144,"y":-171},{"x":157,"y":-81},{"x":162,"y":47},{"x":142,"y":-12},{"x":115,"y":-89},{"x":91,"y":-111},{"x":69,"y":-123},{"x":-42,"y":-134},{"x":-122,"y":-61},{"x":-147,"y":63},{"x":-4,"y":133},{"x":98,"y":149},{"x":113,"y":98},{"x":125,"y":63},{"x":66,"y":146},{"x":129,"y":-46},{"x":-157,"y":-46},{"x":0,"y":90},{"x":0,"y":90},{"x":0,"y":90},{"x":0,"y":95}]
}

数据打标预处理函数:

function preprocessing(data) {
  return [...data.a.map(p => ({...p, tag: true})), ...data.b.map(p => ({...p, tag: false}))]
}

训练脚本:

import netural from 'netural'

const network = new Network({
  framework: [2, 6, 6, 1],
  layers: [
    { type: netural.SIGMOID },
    { type: netural.SIGMOID },
    { type: netural.SIGMOID }
  ]
})

const arr = preprocessing(data)
let index = 0, count = 0

function train() {
  const p = arr[index]
  network.train(p.tag === true ? 1 : 0, 1, {
    input: [p.x / 200, p.y / 200],
    onEnd: function () {
      count++
      index++
      if (index === arr.length) {
        index = 0
      }
      if (count % 1000 === 0) {
        renderTrain()
        setTimeout(train, 100)
      } else {
        train()
      }
    }
  })
}

train()

渲染训练过程:

function renderTrain() {
  ctx.clearRect(-200, -200, 400, 400)
  for (let i = 0; i < 80; i++) {
    for (let j = 0; j < 80; j++) {
      let x = i * 5 + 2.5 - 200
      let y = 200 - j * 5 - 2.5
      // 前向传播推理计算
      ctx.fillStyle = network.compute([x / 200, y / 200])[0] > 0.5 ? 'rgba(155,20,20,0.5)' : 'rgba(20,155,20,0.5)'
      ctx.fillRect(x - 2.5, y - 2.5, 5, 5)
    }
  }
}

License

This content is released under the MIT License.

About

JavaScript前向神经网络(推理)和反向传播(训练)的实现

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published