-
🎓 Educational Qualifications:
- Currently pursuing a Ph.D. in Electrical Engineering at NKUST
- Master's Degree in Electrical Engineering from KUAS
-
🔭 Major:
- Artificial Intelligence with a focus on:
- Natural Language Processing (NLP)
- Large Language Models (LLMs)
- Full Stack Development, specializing in:
- Blockchain
- React Development
- Flask API Development
- Android & iOS Application Development
- Artificial Intelligence with a focus on:
-
❤ Programming Languages:
- Python (Main Skill)
- JavaScript, HTML, CSS (Front-end)
- C/C++ (Firmware and Memory Modifications)
-
🏆 My Competition Achievements
- 『2024 iThome 鐵人賽』: 🥉 『Honorable Mention』 in the AI & Data Category.
- 『Ministry of Education 2023 Artificial Intelligence Cup』: 🥈 『Silver Medal Award』 out of 443 participants.
- 『2023 iThome 鐵人賽』: 🥉 『Honorable Mention』 in the AI & Data Category.
- 『2022 iThome 鐵人賽』: 🥉 『Honorable Mention』 in the AI & Data Category.
- 『2021 KUAS Project Competition』: 🎊 『Best Popular Choice Award』 among all students.
-
📓 My Significant Publications
- Published the AI book 『全面掌握生成式 AI 與 LLM 開發實務』 in 2024.
- Published the book 『從零開始的 AI 程式設計養成之路』 in 2023.
-
📫 How to Reach Me:
- Email: [email protected]
- Discord: austin70915#3980
- Instergrand: austin70915
Pinned Loading
-
holocure-trainer
holocure-trainer PublicThis project can assist in dynamically modifying the HoloCure and editor save file.
-
learn-AI-in-30-days-book-version
learn-AI-in-30-days-book-version PublicChatGPT X Keras X PyTorch 全方位應用實踐指南:從零開始的 AI 程式設計養成之路。2022年iThome鐵人賽「新手也能懂得AI-深入淺出的AI課程」的書籍版本,本書將會使用更乾淨的程式碼與更詳細的內容來帶你學會人工智慧的技術
-
learn-AI-in-30-days
learn-AI-in-30-days Public2022年iThome鐵人賽「AI & Data」組佳作【新手也能懂得AI-深入淺出的AI課程】完整程式碼,該文章會從安裝Python開始到理解AI的程式與理論
-
iThome2023-learn-NLP-in-30-days
iThome2023-learn-NLP-in-30-days Public2023年iThome鐵人賽「AI & Data」組佳作【30天內成為NLP大師:掌握關鍵工具和技巧】完整程式碼,該文章會從零開始教你該如何微調大型語言模型
-
learn-NLP-in-30-days-book-version
learn-NLP-in-30-days-book-version Public本書內容改編自第15屆iThome鐵人賽AI & Data組佳作系列文章《30天內成為NLP大師:掌握關鍵工具和技巧》。本書從基礎理論到實務應用,詳細介紹了自然語言處理的發展過程及相關技術,且循序漸進解釋了AI中的數學原理,如線性代數、矩陣相乘及機率,並將這些理論應用於深度學習模型中。
Jupyter Notebook 4
-
Learning-AI-in-30-Days-by-Using-Math-for-Better-Understanding
Learning-AI-in-30-Days-by-Using-Math-for-Better-Understanding Public2023年iThome鐵人賽「AI & Data」組佳作【從零開始學AI:數學基礎與程式碼撰寫全攻略】完整程式碼,該文章會從基礎的AI模型告訴你其背後的數學公式原理,以及一些簡單的模型優化方式,讓你培養出模型的基礎概念與優化方向
Jupyter Notebook 1
If the problem persists, check the GitHub status page or contact support.