Group matching service using cosine similarity, agglomerative clustering, Multi Dimensional Scaling(MDS).
- numpy
- sklearn (cosine_similarity, AgglomerativeClustering, MDS)
- json
- matplotlib
algorithm.py : Main code, here we calculate the cosine similarity, agglomerative clustering, Multi Dimensional Scaling(MDS).
show_clustering.py : Visualize clustered data with matplotlib using Algorithm.py's function
show_matrix.py : Visualize matrix that transforms a cosine similarity based matrix into a distance matrix
students_data.json : Json file of student’s information including vectorized data
vector.py : Preprocessing and vectorize the data from user. Values can be directly entered at the main function and save the data as a json file.