-
Notifications
You must be signed in to change notification settings - Fork 4
/
infer_LSSagiri.py
268 lines (234 loc) · 11.1 KB
/
infer_LSSagiri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
####LDR output version.
from typing import List, Tuple, Optional
import os
import math
from argparse import ArgumentParser, Namespace
import numpy as np
import torch
import einops
import pytorch_lightning as pl
from PIL import Image
from omegaconf import OmegaConf
import torch.nn.functional as F
from ldm.xformers_state import disable_xformers
from model.spaced_sampler import SpacedSampler
from model.cldm import ControlLDM
from model.cond_fn import MSEGuidance
from utils.image import auto_resize, pad
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts
def load_prompts(filelist_path):
with open(filelist_path, 'r') as file:
lines = file.readlines()
prompt_dict = {}
for line in lines:
parts = line.strip().split(': ')
if len(parts) == 2:
img_path, prompt = parts
prompt_dict[img_path] = prompt
return prompt_dict
@torch.no_grad()
def process(
model: ControlLDM,
control_imgs: List[np.ndarray],
steps: int,
strength: float,
color_fix_type: str,
disable_preprocess_model: bool,
cond_fn: Optional[MSEGuidance],
tiled: bool,
tile_size: int,
tile_stride: int,
positive_prompt: str,
) -> Tuple[List[np.ndarray], List[np.ndarray]]:
"""
Apply Sagiri model on a list of low-quality images. (Code is partly borrowed from DiffBIR)
Args:
model (ControlLDM): Model.
control_imgs (List[np.ndarray]): A list of low-quality images (HWC, RGB, range in [0, 255]).
steps (int): Sampling steps.
strength (float): Control strength. Set to 1.0 during training.
color_fix_type (str): Type of color correction for samples.
disable_preprocess_model (bool): If specified, preprocess model (SwinIR) will not be used.
cond_fn (Guidance | None): Guidance function that returns gradient to guide the predicted x_0.
tiled (bool): If specified, a patch-based sampling strategy will be used for sampling.
tile_size (int): Size of patch.
tile_stride (int): Stride of sliding patch.
positive_prompt: positive prompt input
Returns:
preds (List[np.ndarray]): Restoration results (HWC, RGB, range in [0, 255]).
stage1_preds (List[np.ndarray]): Outputs of preprocess model (HWC, RGB, range in [0, 255]).
If `disable_preprocess_model` is specified, then preprocess model's outputs is the same
as low-quality inputs.
"""
n_samples = len(control_imgs)
sampler = SpacedSampler(model, var_type="fixed_small")
control = torch.tensor(np.stack(control_imgs) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
b,c,h,w=control.shape
###For entire image.
mask = np.ones_like(control.cpu())
###For default mask (over/under exposed region)
# mask = np.zeros_like(control.cpu())
# mask[(control.cpu() == 0) | (control.cpu() == 1)] = 1
mask = mask.astype(np.float32)
mask_latent = mask
mask_record=mask
mask_latent_resized = F.interpolate(torch.tensor(mask_latent), size=(h // 8, w // 8), mode='nearest')
mask_latent_mean = torch.tensor(mask_latent_resized).mean(dim=1, keepdim=True)
mask_latent = torch.cat([mask_latent_resized, mask_latent_mean], dim=1)
mask_latent=mask_latent.to(model.device)
if not disable_preprocess_model:
control = model.preprocess_model(control)
model.control_scales = [strength] * 13
if cond_fn is not None:
cond_fn.load_target(2 * control - 1)
height, width = control.size(-2), control.size(-1)
shape = (n_samples, 4, height // 8, width // 8)
x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
if not tiled:
samples = sampler.sample(
steps=steps, shape=shape, cond_img=control,
mask=mask,
mask_latent=mask_latent,
positive_prompt=positive_prompt, negative_prompt="", x_T=x_T,
cfg_scale=3.0, cond_fn=cond_fn,
color_fix_type=color_fix_type
)
else:
samples = sampler.sample_with_mixdiff(
tile_size=tile_size, tile_stride=tile_stride,
steps=steps, shape=shape, cond_img=control,
mask=mask,
mask_latent=mask_latent,
positive_prompt=positive_prompt, negative_prompt="", x_T=x_T,
cfg_scale=3.0, cond_fn=cond_fn,
color_fix_type=color_fix_type
)
x_samples = samples.clamp(0, 1)
x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
control = (einops.rearrange(control, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
preds = [x_samples[i] for i in range(n_samples)]
stage1_preds = [control[i] for i in range(n_samples)]
return preds, stage1_preds, mask_record
def parse_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument("--ckpt", required=True, type=str, help="full checkpoint path")
parser.add_argument("--config", required=True, type=str, help="model config path")
parser.add_argument("--reload_swinir", action="store_true")
parser.add_argument("--swinir_ckpt", type=str, default="")
parser.add_argument("--input", type=str, required=True)
parser.add_argument("--steps", required=True, type=int)
parser.add_argument("--sr_scale", type=float, default=1)
parser.add_argument("--repeat_times", type=int, default=1)
parser.add_argument("--disable_preprocess_model", action="store_true")
# patch-based sampling
parser.add_argument("--tiled", default=False, action="store_true")
parser.add_argument("--tile_size", type=int, default=512)
parser.add_argument("--tile_stride", type=int, default=512)
# latent image guidance
parser.add_argument("--use_guidance", action="store_true")
parser.add_argument("--g_scale", type=float, default=0.0)
parser.add_argument("--g_t_start", type=int, default=1001)
parser.add_argument("--g_t_stop", type=int, default=-1)
parser.add_argument("--g_space", type=str, default="latent")
parser.add_argument("--g_repeat", type=int, default=5)
parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--show_lq", action="store_true")
parser.add_argument("--skip_if_exist", action="store_true")
parser.add_argument("--seed", type=int, default=231)
parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda", "mps"])
return parser.parse_args()
def check_device(device):
if device == "cuda":
# check if CUDA is available
if not torch.cuda.is_available():
print("CUDA not available because the current PyTorch install was not "
"built with CUDA enabled.")
device = "cpu"
else:
# xformers only support CUDA. Disable xformers when using cpu or mps.
disable_xformers()
if device == "mps":
# check if MPS is available
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
device = "cpu"
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
device = "cpu"
print(f'using device {device}')
return device
def main() -> None:
args = parse_args()
pl.seed_everything(args.seed)
args.device = check_device(args.device)
model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
# reload preprocess model if specified
if args.reload_swinir:
if not hasattr(model, "preprocess_model"):
raise ValueError(f"model don't have a preprocess model.")
print(f"reload swinir model from {args.swinir_ckpt}")
load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
model.freeze()
model.to(args.device)
assert os.path.isdir(args.input)
prompt_dict = load_prompts('path/to/your/prompt/file')
for file_path in list_image_files(args.input, follow_links=True):
# print(file_path)
lq = Image.open(file_path).convert("RGB")
positive_prompt = prompt_dict.get(file_path, None)
# print(positive_prompt)
if not args.tiled:
lq_resized = auto_resize(lq, args.tile_size)
else:
lq_resized = auto_resize(lq, args.tile_size)
x = pad(np.array(lq_resized), scale=64)
for i in range(args.repeat_times):
save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
parent_path, stem, _ = get_file_name_parts(save_path)
save_path = os.path.join(parent_path, f"{stem}_{i}.png")
if os.path.exists(save_path):
if args.skip_if_exist:
print(f"skip {save_path}")
continue
else:
raise RuntimeError(f"{save_path} already exist")
os.makedirs(parent_path, exist_ok=True)
# initialize latent image guidance
if args.use_guidance:
cond_fn = MSEGuidance(
scale=args.g_scale, t_start=args.g_t_start, t_stop=args.g_t_stop,
space=args.g_space, repeat=args.g_repeat
)
else:
cond_fn = None
preds, stage1_preds, _ = process(
model, [x], steps=args.steps,
strength=1,
color_fix_type=args.color_fix_type,
disable_preprocess_model=args.disable_preprocess_model,
cond_fn=cond_fn,
tiled=args.tiled, tile_size=args.tile_size, tile_stride=args.tile_stride, positive_prompt=positive_prompt
)
mask=_
mask = mask.transpose(0, 2, 3, 1).squeeze(0)
pred, stage1_pred = preds[0], stage1_preds[0]
pred = pred[:lq_resized.height, :lq_resized.width, :]
stage1_pred = stage1_pred[:lq_resized.height, :lq_resized.width, :]
if args.show_lq:
pred = np.array(Image.fromarray(pred).resize(lq.size, Image.LANCZOS))
stage1_pred = np.array(Image.fromarray(stage1_pred).resize(lq.size, Image.LANCZOS))
lq = np.array(lq)
images = [lq, pred] if args.disable_preprocess_model else [lq, stage1_pred, pred]
Image.fromarray(np.concatenate(images, axis=1)).save(save_path)
else:
Image.fromarray(pred).resize(lq.size, Image.LANCZOS).save(save_path)
print(f"save to {save_path}")
if __name__ == "__main__":
main()