forked from google-research/slip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiment.py
433 lines (369 loc) · 16.5 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Methods for running optimization trajectories."""
from os import PathLike
import random as python_random
import functools
from glob import glob
from typing import Callable, Dict, Sequence, Tuple, Optional
from pathlib import Path
import numpy as np
import pandas as pd
from scipy import stats
from sklearn import metrics as skm
import tensorflow as tf
import epistasis_selection
import metrics
import models
import potts_model
import sampling
import solver
import tuning
import utils
def get_fitness_df(sequences: np.ndarray,
fitness_fn: Callable,
ref_seq: Sequence[int]):
"""Get a DataFrame with the fitness of the requested sequences.
Args:
sequences: A 2D NxL numpy array of integer encoded sequences.
fitness_fn: A function, that when given a single integer encoded sequence,
returns a fitness value.
ref_seq: An integer encoded sequence. `num_mutations` is measured with
respect to this sequence.
Returns:
A pd.DataFrame with the fields `sequence`, `num_mutations`, `fitness`.
"""
sequences = np.array(sequences)
num_mutations = [utils.hamming_distance(ref_seq, s) for s in sequences.tolist()]
df = pd.DataFrame(
dict(
sequence=sequences.tolist(),
num_mutations=num_mutations,
fitness=fitness_fn(sequences)))
return df
def get_random_split_df(df: pd.DataFrame,
train_fraction: float,
random_state: np.random.RandomState
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Returns two dfs, randomly split into `train_fraction` and 1-`train_fraction`."""
train_df = df.sample(frac=train_fraction, random_state=random_state)
test_df = df[~df.index.isin(train_df.index)].copy()
return (train_df, test_df)
def get_distance_split_df(
df: pd.DataFrame,
reference_seq: Sequence[int],
distance_threshold: int) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Returns DataFrames split based on distance from `reference_seq`.
The first df includes all sequences within `distance_threshold` (inclusive) of
`reference_seq`, and the second df contains the rest.
Args:
df: A pd.DataFrame with a `sequence` column.
reference_seq: A 1D integer-encoded sequence.
distance_threshold: An integer threshold, sequences in `df` with hamming
distance within `distance_threshold` (inclusive) of `reference_sequence`
are included in the first returned df, while the second df contains the
rest.
Returns:
Two pd.DataFrames with the sequences split according to distance.
"""
distance_from_reference = df.sequence.apply(
utils.hamming_distance, y=reference_seq)
train_df = df[distance_from_reference <= distance_threshold].copy()
test_df = df[~df.index.isin(train_df.index)].copy()
return (train_df, test_df)
def fit_model(model, df: pd.DataFrame, vocab_size: int, flatten_inputs: bool):
"""Fit `model` to training data given by `df`."""
x_train, y_train = utils.get_x_y_from_df(
df, vocab_size=vocab_size, flatten=flatten_inputs)
model.fit(x_train, y_train)
def get_regression_metrics(y_pred: np.ndarray,
y_true: np.ndarray):
"""Returns a long-form dictionary of metrics."""
metrics_dict = {}
metrics_dict['mse'] = skm.mean_squared_error(y_pred, y_true)
metrics_dict['std_predicted'] = np.std(y_pred)
metrics_dict['std_test'] = np.std(y_true)
if np.std(y_pred) != 0.0 and np.std(y_true) != 0.0:
# Correlation coefficients are undefined if the deviation of either array is 0.
coef, _ = stats.spearmanr(y_pred, y_true)
metrics_dict['spearman_r'] = coef
coef, _ = stats.kendalltau(y_pred, y_true)
metrics_dict['kendalltau'] = coef
coef, _ = stats.pearsonr(y_pred, y_true)
metrics_dict['pearson_r'] = coef
metrics_dict['r_squared'] = skm.r2_score(y_pred, y_true)
return metrics_dict
def compute_regression_metrics(model, # trained
test_df: pd.DataFrame,
vocab_size: int,
flatten_inputs: bool):
"""Returns regression metrics for a trained model on a given test set."""
x_test, y_true = utils.get_x_y_from_df(
test_df, vocab_size=vocab_size, flatten=flatten_inputs)
y_pred = model.predict(x_test)
size_dict = {'test_size': len(test_df)}
metrics_dict = get_regression_metrics(y_pred, y_true)
metrics_dict.update(size_dict)
return metrics_dict
def compute_regression_metrics_random_split(
model,
df: pd.DataFrame,
train_fraction: float,
vocab_size: int,
flatten_inputs: bool,
random_state: np.random.RandomState):
"""Returns regression metrics for a random split of the data."""
train_df, test_df = get_random_split_df(
df, train_fraction, random_state=random_state)
fit_model(model, train_df, vocab_size, flatten_inputs)
x_test, y_true = utils.get_x_y_from_df(
test_df, vocab_size=vocab_size, flatten=flatten_inputs)
y_pred = model.predict(x_test)
size_dict = {'train_size': len(train_df), 'test_size': len(test_df)}
metrics_dict = get_regression_metrics(y_pred, y_true)
metrics_dict.update(size_dict)
return metrics_dict
def compute_regression_metrics_distance_split(
model,
df: pd.DataFrame,
reference_seq: Sequence[int],
distance_threshold: int,
vocab_size: int,
flatten_inputs: bool):
"""Returns regression metrics for a distance-based split of the data."""
train_df, test_df = get_distance_split_df(df, reference_seq,
distance_threshold)
fit_model(model, train_df, vocab_size, flatten_inputs)
size_dict = {'train_size': len(train_df), 'test_size': len(test_df)}
if len(test_df) == 0:
return size_dict
else:
x_test, y_true = utils.get_x_y_from_df(
test_df, vocab_size=vocab_size, flatten=flatten_inputs)
y_pred = model.predict(x_test)
metrics_dict = get_regression_metrics(y_pred, y_true)
metrics_dict.update(size_dict)
return metrics_dict
def get_samples_around_wildtype(
landscape: potts_model.PottsModel,
num_samples: int,
min_num_mutations: int,
max_num_mutations: int,
include_singles: bool,
random_state: np.random.RandomState):
"""Return a DataFrame with a sample centered around the `landscape` wildtype.
If `include_singles` is true, then L*A singles are added in addition to the
`num_samples` random samples.
Args:
landscape: A landscape with a .evaluate() method.
num_samples: The number of random samples to draw from the landscape.
min_num_mutations: The minimum number of mutations to randomly sample.
max_num_mutations: The maximum number of mutations to randomly sample.
include_singles: Whether to include all single mutants or not.
random_state: np.random.RandomState which dictates the sampling.
Returns:
A DataFrame of samples with `sequence` and `fitness` keys.
"""
sample = sampling.sample_within_hamming_radius(
landscape.wildtype_sequence,
num_samples,
landscape.vocab_size,
min_mutations=min_num_mutations,
max_mutations=max_num_mutations,
random_state=random_state)
if include_singles:
all_singles = sampling.get_all_single_mutants(
landscape.wildtype_sequence, vocab_size=landscape.vocab_size)
sample = np.vstack([sample, all_singles])
random_state.shuffle(sample)
sample_df = get_fitness_df(sample, landscape.evaluate,
landscape.wildtype_sequence)
sample_df['sequence_tuple'] = sample_df.sequence.apply(tuple)
sample_df = sample_df.drop_duplicates('sequence_tuple')
sample_df = sample_df.drop(labels='sequence_tuple', axis='columns')
return sample_df
def get_pdb_from_mogwai_filepath(mogwai_filepath):
pdb = mogwai_filepath.rsplit('/', 1)[1].rstrip('_model_state_dict.npz')
return pdb
def get_test_sets_in_dir(directory: PathLike) -> Dict[str, np.ndarray]:
"""Returns a mapping from test set names to an array of integer encoded sequences.
Loads all of the .npz files in the given directory. Assumes that the npz
files have an attribute named 'sequences' which can be accessed.
Args:
directory: The directory to load from.
Returns:
A mapping from test set names to an array of integer encoded sequences.
"""
test_set_name_to_sequences = {}
for filepath in directory.glob('*.npz'):
test_set_name = filepath.stem
npzfile = np.load(filepath)
test_set_name_to_sequences[test_set_name] = npzfile['sequences']
return test_set_name_to_sequences
def run_regression_experiment(
mogwai_filepath: str,
fraction_adaptive_singles: float,
fraction_reciprocal_adaptive_epistasis: float,
epistatic_horizon: float,
normalize_to_singles: bool,
training_set_min_num_mutations: int,
training_set_max_num_mutations: int,
training_set_num_samples: int,
training_set_include_singles: bool,
training_set_random_seed: int,
test_set_dir: str,
model_name: str,
model_random_seed: int,
model_kwargs: Dict,
):
"""Returns metrics for a regression experiment."""
# Load Potts model landscape
print('Loading tuned landscape...')
untuned_landscape = potts_model.load_from_mogwai_npz(mogwai_filepath)
tuning_kwargs = tuning.get_tuning_kwargs(
untuned_landscape,
fraction_adaptive_singles,
fraction_reciprocal_adaptive_epistasis,
epistatic_horizon,
normalize_to_singles=normalize_to_singles)
landscape = potts_model.load_from_mogwai_npz(
mogwai_filepath,
**tuning_kwargs)
# Sample a training dataset.
print('Sampling training set...')
training_random_state = np.random.RandomState(training_set_random_seed)
train_df = get_samples_around_wildtype(
landscape,
training_set_num_samples,
training_set_min_num_mutations,
training_set_max_num_mutations,
training_set_include_singles,
training_random_state)
# Keras reproducibility
np.random.seed(model_random_seed)
python_random.seed(model_random_seed)
tf.random.set_seed(model_random_seed)
# Train model.
print('Training model...')
sequence_length = len(landscape.wildtype_sequence)
model, flatten_inputs = models.get_model(model_name,
sequence_length,
landscape.vocab_size,
model_kwargs)
fit_model(model, train_df, landscape.vocab_size, flatten_inputs)
run_metrics = {}
# Compute regression metrics.
compute_regression_metrics_for_model = functools.partial(compute_regression_metrics,
vocab_size=landscape.vocab_size,
flatten_inputs=flatten_inputs)
get_fitness_df_for_landscape = functools.partial(get_fitness_df,
fitness_fn=landscape.evaluate,
ref_seq=landscape.wildtype_sequence)
train_metrics = compute_regression_metrics_for_model(model, train_df)
run_metrics['train'] = train_metrics
pdb = get_pdb_from_mogwai_filepath(mogwai_filepath)
test_set_dir = Path(test_set_dir) / Path(pdb)
test_set_name_to_seqs = get_test_sets_in_dir(test_set_dir)
for test_set_name, test_set_seqs in test_set_name_to_seqs.items():
test_df = get_fitness_df_for_landscape(test_set_seqs)
test_set_metrics = compute_regression_metrics_for_model(model, test_df)
run_metrics[test_set_name] = test_set_metrics
return run_metrics
def run_design_experiment(
mogwai_filepath: str,
fraction_adaptive_singles: float,
fraction_reciprocal_adaptive_epistasis: float,
epistatic_horizon: float,
normalize_to_singles: bool,
training_set_min_num_mutations: int,
training_set_max_num_mutations: int,
training_set_num_samples: int,
training_set_include_singles: bool,
training_set_random_seed: int,
model_name: str,
model_random_seed: int,
model_kwargs: Dict,
mbo_num_designs: int,
mbo_random_seed: int,
inner_loop_solver_top_k: int,
inner_loop_solver_min_mutations: int,
inner_loop_solver_max_mutations: int,
inner_loop_num_rounds: int,
inner_loop_num_samples: int,
design_metrics_hit_threshold: float,
design_metrics_cluster_hamming_distance: int,
design_metrics_fitness_percentiles: Sequence[float],
output_filepath: Optional[str] = None,
):
"""Returns a tuple of (metrics, proposal DataFrame) for a design experiment."""
# Load Potts model landscape
untuned_landscape = potts_model.load_from_mogwai_npz(mogwai_filepath)
tuning_kwargs = tuning.get_tuning_kwargs(untuned_landscape,
fraction_adaptive_singles,
fraction_reciprocal_adaptive_epistasis,
epistatic_horizon,
normalize_to_singles)
landscape = potts_model.load_from_mogwai_npz(
mogwai_filepath,
**tuning_kwargs)
# Sample a training dataset.
training_random_state = np.random.RandomState(training_set_random_seed)
sample_df = get_samples_around_wildtype(landscape, training_set_num_samples,
training_set_min_num_mutations,
training_set_max_num_mutations,
training_set_include_singles,
training_random_state)
# Keras reproducibility
np.random.seed(model_random_seed)
python_random.seed(model_random_seed)
tf.random.set_seed(model_random_seed)
# MBO
sequence_length = len(landscape.wildtype_sequence)
model, flatten_inputs = models.get_model(model_name,
sequence_length,
landscape.vocab_size,
model_kwargs)
inner_loop_solver = solver.RandomMutationSolver(
inner_loop_solver_min_mutations,
inner_loop_solver_max_mutations,
top_k=inner_loop_solver_top_k,
vocab_size=landscape.vocab_size)
mbo_random_state = np.random.RandomState(mbo_random_seed)
mbo_solver = solver.ModelBasedSolver(
model,
vocab_size=landscape.vocab_size,
flatten_inputs=flatten_inputs,
inner_loop_num_rounds=inner_loop_num_rounds,
inner_loop_num_samples=inner_loop_num_samples,
inner_loop_solver=inner_loop_solver)
proposals = mbo_solver.propose(
sample_df, num_samples=mbo_num_designs, random_state=mbo_random_state)
proposals_df = get_fitness_df(proposals, landscape.evaluate,
landscape.wildtype_sequence)
if output_filepath:
_write_seq_df_to_path(proposals_df, output_filepath)
# Metrics
run_metrics = {}
normalized_hit_rate = metrics.diversity_normalized_hit_rate(
proposals_df, design_metrics_hit_threshold,
design_metrics_cluster_hamming_distance)
run_metrics['diversity_normalize_hit_rate'] = normalized_hit_rate
for percentile in design_metrics_fitness_percentiles:
percentile_fitness = np.percentile(proposals_df.fitness, q=percentile)
run_metrics['{}_percentile_fitness'.format(percentile)] = percentile_fitness
return run_metrics
def _write_seq_df_to_path(df, output_filepath):
with open(output_filepath) as f:
df.to_csv(f)