forked from google-research/slip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assay_test.py
67 lines (53 loc) · 2.15 KB
/
assay_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for landscape."""
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import assay
class ConstantLandscape:
"""Evaluates to a constant value."""
def __init__(self, fitness):
self._fitness = fitness
def evaluate(self, sequences):
return np.array([self._fitness] * sequences.shape[0])
class AssayTest(parameterized.TestCase):
@parameterized.named_parameters(
dict(
testcase_name='clip_to_5',
constant_fitness=10,
min_fitness_threshold=0,
max_fitness_threshold=5,
),
dict(
testcase_name='clip_up_to_0',
constant_fitness=-10,
min_fitness_threshold=0,
max_fitness_threshold=5,
),
)
def test_thresholded_assay(self, constant_fitness, min_fitness_threshold,
max_fitness_threshold):
sequences = np.array([[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]])
mock_landscape = ConstantLandscape(constant_fitness)
thresholded_assay = assay.ThresholdedAssay(mock_landscape,
min_fitness_threshold,
max_fitness_threshold)
actual_fitnesses = thresholded_assay.evaluate(sequences)
for actual_fitness in actual_fitnesses:
self.assertLessEqual(actual_fitness, max_fitness_threshold)
self.assertGreaterEqual(actual_fitness, min_fitness_threshold)
if __name__ == '__main__':
absltest.main()