-
Notifications
You must be signed in to change notification settings - Fork 2
/
models.py
105 lines (88 loc) · 3.41 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding=utf-8
import torch
import torchvision
from torchvision import models, datasets
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# import config as cfg
class ConvNet(nn.Module):
def __init__(self, num_channels):
super(ConvNet, self).__init__()
self.num_channels = num_channels
self.conv1 = nn.Conv2d(in_channels=self.num_channels, out_channels=16, kernel_size=(2, 2), stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2, 2), stride=1, padding=1)
self.fc1 = nn.Linear(64, 16)
self.fc2 = nn.Linear(16, 1)
def forward(self, x):
x = x[:, :, :, :]
# 2x2 Max pooling
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
# print(x.size())
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = self.fc2(x).reshape(-1)
return x
def num_flat_features(self, x):
sizes = x.size()[1:]
num_features = 1
for s in sizes:
num_features *= s
return num_features
class SimpleLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1, dropout=0.25):
super(SimpleLSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
batch_first=True
)
self.fc_1 = nn.Linear(hidden_size, 16)
self.fc_2 = nn.Linear(16, 1)
def forward(self, x):
x, (h_n, c_n) = self.lstm(x)
x = torch.tanh(self.fc_1(x[:, -1, :]))
x = self.fc_2(x).reshape(-1)
return x
def init_hidden(self):
return torch.randn(1, 24, self.hidden_size)
class CovLSTM(nn.Module):
def __init__(self, cnn_num_channels,
lstm_input_size, lstm_hidden_size, lstm_num_layers=1, lstm_dropout=0):
super(CovLSTM, self).__init__()
self.conv1 = nn.Conv2d(in_channels=cnn_num_channels, out_channels=6, kernel_size=(2, 2), stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=(2, 2), stride=1, padding=1)
self.fc_cnn_1 = nn.Linear(64, 16)
self.lstm = nn.LSTM(
input_size=lstm_input_size,
hidden_size=lstm_hidden_size,
num_layers=lstm_num_layers,
dropout=lstm_dropout,
batch_first=True
)
self.fc_lstm_1 = nn.Linear(lstm_hidden_size, 16)
self.fc_final = nn.Linear(16+16, 1)
def forward(self, x_cnn, x_lstm):
x_cnn = x_cnn[:, :, :, :]
x_cnn = F.max_pool2d(F.relu(self.conv1(x_cnn)), (2, 2))
x_cnn = F.max_pool2d(F.relu(self.conv2(x_cnn)), (2, 2))
x_cnn = x_cnn.view(-1, self.num_flat_features(x_cnn))
x_cnn = F.relu(self.fc_cnn_1(x_cnn))
# print(x_cnn.shape)
x_lstm, (h_n, c_n) = self.lstm(x_lstm)
x_lstm = torch.tanh(self.fc_lstm_1(x_lstm[:, -1, :]))
# print(x_lstm.shape)
v_combined = torch.cat((x_cnn, x_lstm), 1)
pred = self.fc_final(v_combined).reshape(-1)
return pred
def num_flat_features(self, x):
sizes = x.size()[1:]
num_features = 1
for s in sizes:
num_features *= s
return num_features