You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(flashatt) yangyk@yyk-s1:~/yangyk/NN_CUDA/lsq/lsq-net$ python main.py ./examples/lsq/resnet20_a2w2_cifar10.yaml
/home/yangyk/yangyk/NN_CUDA/lsq/lsq-net
<class 'pathlib.PosixPath'>
INFO - Log file for this run: /home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/out/resnet20_a2w2_cifar10_20240531-171941/resnet20_a2w2_cifar10_20240531-171941.log
INFO - TensorBoard data directory: /home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/out/resnet20_a2w2_cifar10_20240531-171941/tb_runs
Files already downloaded and verified
Files already downloaded and verified
/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/utils/data/dataloader.py:560: UserWarning: This DataLoader will create 32 worker processes in total. Our suggested max number of worker in current system is 16, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
warnings.warn(_create_warning_msg(
INFO - Dataset cifar10 size:
Training Set = 50000 (196)
Validation Set = 10000 (40)
Test Set = 10000 (40)
INFO - Created resnet20 model for cifar10 dataset
Use pre-trained model = True
tensor(8)
Traceback (most recent call last):
File "main.py", line 120, in
main()
File "main.py", line 59, in main
tbmonitor.writer.add_graph(model, input_to_model=train_loader.dataset[0][0].unsqueeze(0))
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 841, in add_graph
graph(model, input_to_model, verbose, use_strict_trace)
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/utils/tensorboard/_pytorch_graph.py", line 337, in graph
trace = torch.jit.trace(model, args, strict=use_strict_trace)
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/jit/_trace.py", line 794, in trace
return trace_module(
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/jit/_trace.py", line 1056, in trace_module
module._c._create_method_from_trace(
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1488, in _slow_forward
result = self.forward(*input, **kwargs)
File "/home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/model/resnet_cifar.py", line 125, in forward
out = F.avg_pool2d(out, kernel_size=out.size()[3])
TypeError: avg_pool2d(): argument 'kernel_size' must be tuple of ints, not Tensor
How to fix this bug when I try to train resnet20 for cifar-10
The text was updated successfully, but these errors were encountered:
INFO - >>>>>>>> Epoch -1 (pre-trained model evaluation)
INFO - Validation: 10000 samples (256 per mini-batch)
8
torch.Size([256, 64])
torch.Size([256, 10])
Traceback (most recent call last):
File "main.py", line 120, in
main()
File "main.py", line 94, in main
top1, top5, _ = process.validate(val_loader, model, criterion,
File "/home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/process.py", line 104, in validate
acc1, acc5 = accuracy(outputs.data, targets.data, topk=(1, 5))
File "/home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/process.py", line 27, in accuracy
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
And also this bug
(flashatt) yangyk@yyk-s1:~/yangyk/NN_CUDA/lsq/lsq-net$ python main.py ./examples/lsq/resnet20_a2w2_cifar10.yaml
/home/yangyk/yangyk/NN_CUDA/lsq/lsq-net
<class 'pathlib.PosixPath'>
INFO - Log file for this run: /home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/out/resnet20_a2w2_cifar10_20240531-171941/resnet20_a2w2_cifar10_20240531-171941.log
INFO - TensorBoard data directory: /home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/out/resnet20_a2w2_cifar10_20240531-171941/tb_runs
Files already downloaded and verified
Files already downloaded and verified
/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/utils/data/dataloader.py:560: UserWarning: This DataLoader will create 32 worker processes in total. Our suggested max number of worker in current system is 16, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
warnings.warn(_create_warning_msg(
INFO - Dataset cifar10 size:
Training Set = 50000 (196)
Validation Set = 10000 (40)
Test Set = 10000 (40)
INFO - Created resnet20 model for cifar10 dataset
Use pre-trained model = True
tensor(8)
Traceback (most recent call last):
File "main.py", line 120, in
main()
File "main.py", line 59, in main
tbmonitor.writer.add_graph(model, input_to_model=train_loader.dataset[0][0].unsqueeze(0))
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 841, in add_graph
graph(model, input_to_model, verbose, use_strict_trace)
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/utils/tensorboard/_pytorch_graph.py", line 337, in graph
trace = torch.jit.trace(model, args, strict=use_strict_trace)
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/jit/_trace.py", line 794, in trace
return trace_module(
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/jit/_trace.py", line 1056, in trace_module
module._c._create_method_from_trace(
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/yangyk/anaconda3/envs/flashatt/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1488, in _slow_forward
result = self.forward(*input, **kwargs)
File "/home/yangyk/yangyk/NN_CUDA/lsq/lsq-net/model/resnet_cifar.py", line 125, in forward
out = F.avg_pool2d(out, kernel_size=out.size()[3])
TypeError: avg_pool2d(): argument 'kernel_size' must be tuple of ints, not Tensor
How to fix this bug when I try to train resnet20 for cifar-10
The text was updated successfully, but these errors were encountered: