-
Notifications
You must be signed in to change notification settings - Fork 466
/
ILSVRC_generate_heatmap.m
138 lines (100 loc) · 4.49 KB
/
ILSVRC_generate_heatmap.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
% raw script used to generate heatmaps for ILSVRC localization experiment
% please load the necessary packages like matcaffe and ILSVRC toolbox correctly, some functions in matcaffe might be already deprecated.
% you could take it as an example to see how to reproduce the ILSVRC localization experiment.
%
% Bolei Zhou.
addpath('caffeCPU2/matlab/caffe');
modelSetFolder = 'CAMnet';
%% CAMnet
% netName = 'CAM_googlenetBVLC_imagenet';
% model_file = [modelSetFolder '/googlenet_imagenet/bvlc_googlenet.caffemodel'];
% model_def_file = [modelSetFolder '/googlenet_imagenet/deploy.protxt'];
% netName = 'CAM_alexnet';
% model_file = [modelSetFolder '/alexnet/CAMmodels/caffeNetCAM_imagenet_train_iter_100000.caffemodel'];
% model_def_file = [modelSetFolder '/alexnet/deploy_caffeNetCAM.prototxt'];
netName = 'CAM_googlenetBVLCshrink_imagenet';
model_file = [modelSetFolder '/googlenet_imagenet/CAMmodels/imagenet_googleletCAM_train_iter_80000.caffemodel'];
model_def_file = [modelSetFolder '/googlenet_imagenet/deploy_googlenetCAM.prototxt'];
% netName = 'CAM_VGG16_imagenet';
% model_file = [modelSetFolder '/VGGnet/models/vgg16CAM_train_iter_50000.caffemodel'];
% model_def_file = [modelSetFolder '/VGGnet/deploy_vgg16CAM.prototxt'];
%% loading the network
caffe('init', model_def_file, model_file,'test');
caffe('set_mode_gpu');
caffe('set_device',0);
%% testing to predict some image
weights = caffe('get_weights');
weights_LR = squeeze(weights(end,1).weights{1,1});
bias_LR = weights(end,1).weights{2,1};
layernames = caffe('get_names');
response = caffe('get_all_layers');
netInfo = cell(size(layernames,1),3);
for i=1:size(layernames,1)
netInfo{i,1} = layernames{i};
netInfo{i,2} = i;
netInfo{i,3} = size(response{i,1});
end
load('categoriesImageNet.mat');
d = load('/data/vision/torralba/small-projects/bolei_deep/caffe/ilsvrc_2012_mean.mat');
IMAGE_MEAN = d.image_mean;
IMAGE_DIM = 256;
CROPPED_DIM = netInfo{1,3}(1);
weightInfo = cell(size(weights,1),1);
for i=1:size(weights,1)
weightInfo{i,1} = weights(i,1).layer_names;
weightInfo{i,2} = weights(i,1).weights{1,1};
weightInfo{i,3} = size(weights(i,1).weights{1,1});
end
%% testing to predict some image
datasetName = 'ILSVRCvalSet';
datasetPath = '/data/vision/torralba/gigaSUN/deeplearning/dataset/ILSVRC2012';
load([datasetPath '/imageListVal.mat']);
load('sizeImg_ILSVRC2014.mat');
% datasetName = 'ILSVRCtestSet';
% datasetPath = '/data/vision/torralba/deeplearning/imagenet_toolkit';
% load([datasetPath '/imageListTest.mat']);
saveFolder = ['heatMap-' datasetName '-' netName];
if ~exist(saveFolder)
mkdir(saveFolder);
end
for i=1:5
if ~exist([saveFolder '/top' num2str(i)])
mkdir([saveFolder '/top' num2str(i)]);
end
end
for i = 1:size(imageList,1)
curImgIDX = i;
[a b c] = fileparts(imageList{curImgIDX,1});
saveMatFile = [saveFolder '/' b '.mat'];
if ~exist(saveMatFile)
height_original = sizeFull_imageList(curImgIDX,1);%tmp.Height;
weight_original = sizeFull_imageList(curImgIDX,2);%tmp.Width;
curImg = imread(imageList{curImgIDX,1});
if size(curImg,3)==1
curImg = repmat(curImg,[1 1 3]);
end
scores = caffe('forward', {prepare_img(curImg, IMAGE_MEAN, CROPPED_DIM)});
response = caffe('get_all_layers');
scoresMean = mean(squeeze(scores{1}),2);
[value_category, IDX_category] = sort(scoresMean,'descend');
featureObjectSwitchSpatial = squeeze(response{end-3,1});
[curColumnMap] = returnColumnMap(featureObjectSwitchSpatial, weights_LR(:,IDX_category(1:5)));
for j=1:5
curFeatureMap = squeeze(curColumnMap(:,:,j,:));
curFeatureMap_crop = imresize(curFeatureMap,[netInfo{1,3}(1) netInfo{1,3}(2)]);
gradients = zeros([netInfo{1,3}(1) netInfo{1,3}(2) 3 10]);
gradients(:,:,1,:) = curFeatureMap_crop;
gradients(:,:,2,:) = curFeatureMap_crop;
gradients(:,:,3,:) = curFeatureMap_crop;
[alignImgMean alignImgSet] = crop2img(gradients);
alignImgMean = single(alignImgMean);
alignImgMean = imresize(alignImgMean, [height_original weight_original]);
alignImgMean = alignImgMean./max(alignImgMean(:));
imwrite(alignImgMean, [saveFolder '/top' num2str(j) '/' b '.jpg']);
end
value_category = single(value_category);
IDX_category = single(IDX_category);
save(saveMatFile,'value_category','IDX_category');
disp([netName ' processing ' b]);
end
end