-
Notifications
You must be signed in to change notification settings - Fork 4
/
main_lstm.py
373 lines (329 loc) · 16.1 KB
/
main_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import argparse
import time
import math
import numpy as np
import torch
import os
import hashlib
import datetime
###############################################################################
# Data loading code
###############################################################################
def model_save(fn):
with open(fn, 'wb') as f:
torch.save([model, criterion, optimizer], f)
def model_load(fn):
global model, criterion, optimizer
with open(fn, 'rb') as f:
model, criterion, optimizer = torch.load(f)
###############################################################################
# Make batch
###############################################################################
def repackage_hidden(h):
"""Wraps hidden states in new Tensors,
to detach them from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
def batchify(data, bsz, args):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
if args.cuda:
data = data.cuda()
return data
def get_batch(source, i, args, seq_len=None, evaluation=False):
seq_len = min(seq_len if seq_len else args.bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+1:i+1+seq_len].view(-1)
return data, target
###############################################################################
# Training code
###############################################################################
def evaluate(data_source, test_logger, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
total_loss += len(data) * criterion(model.decoder.weight, model.decoder.bias, output, targets).data
hidden = repackage_hidden(hidden)
ret = total_loss.item() / len(data_source)
if test_logger is not None:
test_logger.log({'epoch': epoch, 'loss': ret, 'ppl': math.exp(ret)})
return ret
def train(train_logger):
# Turn on training mode which enables dropout.
total_loss = 0
avg_loss = 0
start_time = time.time()
hidden = model.init_hidden(args.batch_size)
batch, i = 0, 0
while i < train_data.size(0) - 1 - 1:
bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
# Prevent excessively small or negative sequence lengths
seq_len = max(5, int(np.random.normal(bptt, 5)))
# There's a very small chance that it could select a very long sequence length resulting in OOM
# seq_len = min(seq_len, args.bptt + 10)
lr2 = optimizer.param_groups[0]['lr']
optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
if 'gamma' in optimizer.param_groups[0]:
gamma2 = optimizer.param_groups[0]['gamma']
optimizer.param_groups[0]['gamma'] = gamma2 * seq_len / args.bptt
model.train()
data, targets = get_batch(train_data, i, args, seq_len=seq_len)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
# hidden = nn.Parameter(hidden)
optimizer.zero_grad()
output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True)
raw_loss = criterion(model.decoder.weight, model.decoder.bias, output, targets)
loss = raw_loss
# Activation Regularization
if args.alpha: loss = loss + sum(
args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
# Temporal Activation Regularization (slowness)
if args.beta: loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
optimizer.step()
total_loss += raw_loss.data
avg_loss += raw_loss.data.item()
optimizer.param_groups[0]['lr'] = lr2
if 'gamma' in optimizer.param_groups[0]:
optimizer.param_groups[0]['gamma'] = gamma2
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss.item() / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:05.5f} | ms/batch {:5.2f} | '
'loss {:7.4f} | ppl {:9.3f} | bpc {:8.3f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss), cur_loss / math.log(2)))
total_loss = 0
start_time = time.time()
batch += 1
i += seq_len
train_logger.log({'epoch': epoch, 'loss': avg_loss / batch, 'ppl': math.exp(avg_loss / batch)})
if __name__ == '__main__':
# Run commands
# python main.py --batch_size 20 --data data/penn --dropouti 0.4
# --dropouth 0.25 --seed 141 --epoch 500 --save PTB.pt
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank LSTM Language Model')
parser.add_argument('--data', type=str, default='data/penn/',
help='location of the data corpus')
parser.add_argument('--result-dir', type=str, default='result/')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=400,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=1150,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=3,
help='number of layers')
parser.add_argument('--lr', type=float, default=30,
help='initial learning rate')
parser.add_argument('--gamma', type=float, default=10,
help='gradient clipping')
parser.add_argument('--momentum', type=float, default=0.0,
help='momentum')
parser.add_argument('--epochs', type=int, default=200,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=80, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.4,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.3,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.65,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden to hidden matrix')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--cuda', action='store_false',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--save', type=str, default=randomhash + '.pt',
help='path to save the final model')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)')
parser.add_argument('--wd', type=float, default=1.2e-6,
help='weight decay applied to all weights')
parser.add_argument('--algo', type=str, default='sgd',
help='optimizer to use (sgd, adam)')
parser.add_argument('--nu', type=float, default=0.7)
args = parser.parse_args()
args.tied = True
from utils import TableLogger, create_result_dir
result_dir = create_result_dir(args)
train_logger = TableLogger(os.path.join(result_dir, 'train.log'), ['epoch', 'loss', 'ppl'])
test_logger = TableLogger(os.path.join(result_dir, 'test.log'), ['epoch', 'loss', 'ppl'])
args.save = os.path.join(result_dir, args.save)
# Set the random seed manually for reproducibility.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest())
if os.path.exists(fn):
print('Loading cached dataset...')
corpus = torch.load(fn)
else:
from dataset.nlp_data import Corpus
print('Producing dataset...')
corpus = Corpus(args.data)
torch.save(corpus, fn)
eval_batch_size = 10
test_batch_size = 2
train_data = batchify(corpus.train, args.batch_size, args)
val_data = batchify(corpus.valid, eval_batch_size, args)
test_data = batchify(corpus.test, test_batch_size, args)
###############################################################################
# Build the model
###############################################################################
from model.splitcross import SplitCrossEntropyLoss
from model.awdlstm import RNNModel
criterion = None
ntokens = len(corpus.dictionary)
print(ntokens)
model = RNNModel(args.model,
ntokens,
args.emsize,
args.nhid,
args.nlayers,
args.dropout,
args.dropouth,
args.dropouti,
args.dropoute,
args.wdrop,
args.tied,
)
if not criterion:
splits = []
if ntokens > 500000:
# One Billion
# This produces fairly even matrix mults for the buckets:
# 0: 11723136, 1: 10854630, 2: 11270961, 3: 11219422
splits = [4200, 35000, 180000]
elif ntokens > 75000:
# WikiText-103
splits = [2800, 20000, 76000]
print('Using', splits)
criterion = SplitCrossEntropyLoss(args.emsize, splits=splits, verbose=False)
###
if args.cuda:
print('Putting model into cuda')
model = model.cuda()
criterion = criterion.cuda()
###
params = list(model.parameters()) + list(criterion.parameters())
total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in params if x.size())
print('Args:', args)
print('Model total parameters:', total_params)
total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in params if
(x.requires_grad == True and x.size()))
print('Model trainable parameters:', total_params)
print('+' * 89)
print(model)
print('+' * 89)
lr = args.lr
best_val_loss = []
stored_loss = 100000000
# At any point you can hit Ctrl + C to break out of training early.
try:
optimizer = None
from algorithm import SGDClip, MomClip, MixClip, Algorithm, SGD
if args.algo == 'sgd':
optimizer = Algorithm(params, SGD, lr=args.lr, wd=args.wd, momentum=args.momentum)
if args.algo == 'adam':
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.wd)
if args.algo == 'sgd_clip':
optimizer = Algorithm(params, SGDClip, lr=args.lr, wd=args.wd, gamma=args.gamma, momentum=args.momentum)
if args.algo == 'mom_clip':
optimizer = Algorithm(params, MomClip, lr=args.lr, wd=args.wd, gamma=args.gamma, momentum=args.momentum)
if args.algo == 'mix_clip':
optimizer = Algorithm(params, MixClip, lr=args.lr, wd=args.wd, gamma=args.gamma, momentum=args.momentum, nu=args.nu)
# Ensure the optimizer is optimizing params, which includes both the model's weights as well as the criterion's weight (i.e. Adaptive Softmax)
# Loop over epochs.
begin_avg = False
ax = {}
avg_cnt = 0
for epoch in range(0, args.epochs):
epoch_start_time = time.time()
train(train_logger)
if begin_avg:
avg_cnt += 1
for prm in model.parameters():
if avg_cnt == 1:
ax[prm] = prm.data.clone()
else:
ax[prm].add_(prm.data.sub(ax[prm]).mul(1 / avg_cnt))
tmp = {}
for prm in model.parameters():
tmp[prm] = prm.data.clone()
if len(ax) > 0:
prm.data.copy_(ax[prm])
val_loss2 = evaluate(val_data, test_logger)
loss_scalar = val_loss2
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:7.4f} | '
'valid ppl {:9.3f} | valid bpc {:8.3f}'.format(
epoch, (time.time() - epoch_start_time), val_loss2, math.exp(val_loss2), val_loss2 / math.log(2)))
print('-' * 89)
if val_loss2 < stored_loss:
model_save(args.save)
print('Saving Averaged!')
stored_loss = val_loss2
for prm in model.parameters():
prm.data.copy_(tmp[prm])
else:
val_loss = evaluate(val_data, test_logger, eval_batch_size)
print('-' * 89)
loss_scalar = val_loss
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:7.4f} | '
'valid ppl {:9.3f} | valid bpc {:8.3f}'.format(
epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss), val_loss / math.log(2)))
print('-' * 89)
if val_loss < stored_loss:
model_save(args.save)
print('Saving model (new best validation)')
stored_loss = val_loss
if not begin_avg and isinstance(optimizer, Algorithm) and len(best_val_loss) > args.nonmono \
and val_loss > min(best_val_loss[:-args.nonmono]):
print('Starting averaging')
begin_avg = True
best_val_loss.append(val_loss)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
model_load(args.save)
# Run on test data.
test_loss = evaluate(test_data, None, test_batch_size)
print('=' * 89)
print('| End of training | test loss {:7.4f} | test ppl {:9.3f} | test bpc {:8.3f}'.format(
test_loss, math.exp(test_loss), test_loss / math.log(2)))
print('=' * 89)