Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[New Codec Proposal] SpatialDelta #583

Open
ehgus opened this issue Sep 25, 2024 · 0 comments
Open

[New Codec Proposal] SpatialDelta #583

ehgus opened this issue Sep 25, 2024 · 0 comments
Labels
New codec Suggestion for a new codec

Comments

@ehgus
Copy link
Contributor

ehgus commented Sep 25, 2024

This topic was discussed in #198, and I share the implementation.

Motivation: Encoding with data differences is widely used in 2D video, and we need a similar feature for "3D video". Current Delta codec requires flattening data before delta compression. New Delta codec with axis specification will fully exploit the local similarity along the specified axis.

Implementation: Here is the implementation below. The template is from Delta's implementation.

class SpatialDelta(Codec):

    codec_id = 'spatial_delta'

    def __init__(self, axis, dtype, astype=None):
        self.axis = axis
        self.dtype = np.dtype(dtype)
        if astype is None:
            self.astype = self.dtype
        else:
            self.astype = np.dtype(astype)
        if self.dtype == np.dtype(object) or self.astype == np.dtype(object):
            raise ValueError('object arrays are not supported')

    def encode(self, buf):
        # normalise input
        arr = ensure_ndarray(buf).view(self.dtype)

        # flatten to simplify implementation
        # arr = arr.reshape(-1, order='A')

        # setup encoded output
        enc = np.empty_like(arr, dtype = self.astype)

        # set first element
        slice_idx = [slice(0, None) for _ in range(arr.ndim)]
        slice_idx[self.axis] = slice(0,1)
        enc[*slice_idx] = arr[*slice_idx]

        # compute differences
        slice_idx[self.axis] = slice(1, None)
        enc[*slice_idx] = np.diff(arr, axis = self.axis)

        return enc

    def decode(self, buf, out=None):
        # normalise input
        enc = ensure_ndarray(buf).view(self.astype)

        # flatten to simplify implementation

        # setup decoded output
        dec = np.empty_like(enc, dtype=self.dtype)

        # decode differences
        np.cumsum(enc, axis = self.axis, out=dec)

        # handle output
        out = ndarray_copy(dec, out)

        return out

    def get_config(self):
        # override to handle encoding dtypes
        return dict(id=self.codec_id, dtype=self.dtype.str, astype=self.astype.str)

    def __repr__(self):
        r = f'{type(self).__name__}(dtype={self.dtype.str!r}, axis={self.axis}'
        if self.astype != self.dtype:
            r += f', astype={self.astype.str!r}'
        r += ')'
        return r

Example:

>>> import numcodecs
>>> import numpy as np
>>> x = np.arange(27, dtype = 'i2').reshape(3,3,3)
>>> codec = numcodecs.SpatialDelta(axis = 1,dtype='i2', astype='i1')
>>> y = codec.encode(x)
>>> y
array([[[ 0,  1,  2],
        [ 3,  3,  3],
        [ 3,  3,  3]],

       [[ 9, 10, 11],
        [ 3,  3,  3],
        [ 3,  3,  3]],

       [[18, 19, 20],
        [ 3,  3,  3],
        [ 3,  3,  3]]], dtype=int8)
>>> z = codec.decode(y)
>>> z
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]], dtype=int16)
@dstansby dstansby added the New codec Suggestion for a new codec label Sep 29, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
New codec Suggestion for a new codec
Projects
None yet
Development

No branches or pull requests

2 participants