forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linmath.h
501 lines (445 loc) · 14.6 KB
/
linmath.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/*
* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Relicensed from the WTFPL (http://www.wtfpl.net/faq/).
*/
#ifndef LINMATH_H
#define LINMATH_H
#include <math.h>
// Converts degrees to radians.
#define degreesToRadians(angleDegrees) (angleDegrees * M_PI / 180.0)
// Converts radians to degrees.
#define radiansToDegrees(angleRadians) (angleRadians * 180.0 / M_PI)
typedef float vec3[3];
static inline void vec3_add(vec3 r, vec3 const a, vec3 const b) {
int i;
for (i = 0; i < 3; ++i) r[i] = a[i] + b[i];
}
static inline void vec3_sub(vec3 r, vec3 const a, vec3 const b) {
int i;
for (i = 0; i < 3; ++i) r[i] = a[i] - b[i];
}
static inline void vec3_scale(vec3 r, vec3 const v, float const s) {
int i;
for (i = 0; i < 3; ++i) r[i] = v[i] * s;
}
static inline float vec3_mul_inner(vec3 const a, vec3 const b) {
float p = 0.f;
int i;
for (i = 0; i < 3; ++i) p += b[i] * a[i];
return p;
}
static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) {
r[0] = a[1] * b[2] - a[2] * b[1];
r[1] = a[2] * b[0] - a[0] * b[2];
r[2] = a[0] * b[1] - a[1] * b[0];
}
static inline float vec3_len(vec3 const v) { return sqrtf(vec3_mul_inner(v, v)); }
static inline void vec3_norm(vec3 r, vec3 const v) {
float k = 1.f / vec3_len(v);
vec3_scale(r, v, k);
}
static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) {
float p = 2.f * vec3_mul_inner(v, n);
int i;
for (i = 0; i < 3; ++i) r[i] = v[i] - p * n[i];
}
typedef float vec4[4];
static inline void vec4_add(vec4 r, vec4 const a, vec4 const b) {
int i;
for (i = 0; i < 4; ++i) r[i] = a[i] + b[i];
}
static inline void vec4_sub(vec4 r, vec4 const a, vec4 const b) {
int i;
for (i = 0; i < 4; ++i) r[i] = a[i] - b[i];
}
static inline void vec4_scale(vec4 r, vec4 v, float s) {
int i;
for (i = 0; i < 4; ++i) r[i] = v[i] * s;
}
static inline float vec4_mul_inner(vec4 a, vec4 b) {
float p = 0.f;
int i;
for (i = 0; i < 4; ++i) p += b[i] * a[i];
return p;
}
static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) {
r[0] = a[1] * b[2] - a[2] * b[1];
r[1] = a[2] * b[0] - a[0] * b[2];
r[2] = a[0] * b[1] - a[1] * b[0];
r[3] = 1.f;
}
static inline float vec4_len(vec4 v) { return sqrtf(vec4_mul_inner(v, v)); }
static inline void vec4_norm(vec4 r, vec4 v) {
float k = 1.f / vec4_len(v);
vec4_scale(r, v, k);
}
static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) {
float p = 2.f * vec4_mul_inner(v, n);
int i;
for (i = 0; i < 4; ++i) r[i] = v[i] - p * n[i];
}
typedef vec4 mat4x4[4];
static inline void mat4x4_identity(mat4x4 M) {
int i, j;
for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j) M[i][j] = i == j ? 1.f : 0.f;
}
static inline void mat4x4_dup(mat4x4 M, mat4x4 N) {
int i, j;
for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j) M[i][j] = N[i][j];
}
static inline void mat4x4_row(vec4 r, mat4x4 M, int i) {
int k;
for (k = 0; k < 4; ++k) r[k] = M[k][i];
}
static inline void mat4x4_col(vec4 r, mat4x4 M, int i) {
int k;
for (k = 0; k < 4; ++k) r[k] = M[i][k];
}
static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) {
int i, j;
for (j = 0; j < 4; ++j)
for (i = 0; i < 4; ++i) M[i][j] = N[j][i];
}
static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) {
int i;
for (i = 0; i < 4; ++i) vec4_add(M[i], a[i], b[i]);
}
static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) {
int i;
for (i = 0; i < 4; ++i) vec4_sub(M[i], a[i], b[i]);
}
static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) {
int i;
for (i = 0; i < 4; ++i) vec4_scale(M[i], a[i], k);
}
static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z) {
int i;
vec4_scale(M[0], a[0], x);
vec4_scale(M[1], a[1], y);
vec4_scale(M[2], a[2], z);
for (i = 0; i < 4; ++i) {
M[3][i] = a[3][i];
}
}
static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) {
int k, r, c;
for (c = 0; c < 4; ++c)
for (r = 0; r < 4; ++r) {
M[c][r] = 0.f;
for (k = 0; k < 4; ++k) M[c][r] += a[k][r] * b[c][k];
}
}
static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) {
int i, j;
for (j = 0; j < 4; ++j) {
r[j] = 0.f;
for (i = 0; i < 4; ++i) r[j] += M[i][j] * v[i];
}
}
static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) {
mat4x4_identity(T);
T[3][0] = x;
T[3][1] = y;
T[3][2] = z;
}
static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z) {
vec4 t = {x, y, z, 0};
vec4 r;
int i;
for (i = 0; i < 4; ++i) {
mat4x4_row(r, M, i);
M[3][i] += vec4_mul_inner(r, t);
}
}
static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) {
int i, j;
for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j) M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f;
}
static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle) {
float s = sinf(angle);
float c = cosf(angle);
vec3 u = {x, y, z};
if (vec3_len(u) > 1e-4) {
vec3_norm(u, u);
mat4x4 T;
mat4x4_from_vec3_mul_outer(T, u, u);
mat4x4 S = {{0, u[2], -u[1], 0}, {-u[2], 0, u[0], 0}, {u[1], -u[0], 0, 0}, {0, 0, 0, 0}};
mat4x4_scale(S, S, s);
mat4x4 C;
mat4x4_identity(C);
mat4x4_sub(C, C, T);
mat4x4_scale(C, C, c);
mat4x4_add(T, T, C);
mat4x4_add(T, T, S);
T[3][3] = 1.;
mat4x4_mul(R, M, T);
} else {
mat4x4_dup(R, M);
}
}
static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) {
float s = sinf(angle);
float c = cosf(angle);
mat4x4 R = {{1.f, 0.f, 0.f, 0.f}, {0.f, c, s, 0.f}, {0.f, -s, c, 0.f}, {0.f, 0.f, 0.f, 1.f}};
mat4x4_mul(Q, M, R);
}
static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) {
float s = sinf(angle);
float c = cosf(angle);
mat4x4 R = {{c, 0.f, s, 0.f}, {0.f, 1.f, 0.f, 0.f}, {-s, 0.f, c, 0.f}, {0.f, 0.f, 0.f, 1.f}};
mat4x4_mul(Q, M, R);
}
static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) {
float s = sinf(angle);
float c = cosf(angle);
mat4x4 R = {{c, s, 0.f, 0.f}, {-s, c, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}};
mat4x4_mul(Q, M, R);
}
static inline void mat4x4_invert(mat4x4 T, mat4x4 M) {
float s[6];
float c[6];
s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
/* Assumes it is invertible */
float idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] - s[4] * c[1] + s[5] * c[0]);
T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
}
static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) {
mat4x4_dup(R, M);
float s = 1.;
vec3 h;
vec3_norm(R[2], R[2]);
s = vec3_mul_inner(R[1], R[2]);
vec3_scale(h, R[2], s);
vec3_sub(R[1], R[1], h);
vec3_norm(R[2], R[2]);
s = vec3_mul_inner(R[1], R[2]);
vec3_scale(h, R[2], s);
vec3_sub(R[1], R[1], h);
vec3_norm(R[1], R[1]);
s = vec3_mul_inner(R[0], R[1]);
vec3_scale(h, R[1], s);
vec3_sub(R[0], R[0], h);
vec3_norm(R[0], R[0]);
}
static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) {
M[0][0] = 2.f * n / (r - l);
M[0][1] = M[0][2] = M[0][3] = 0.f;
M[1][1] = 2.f * n / (t - b);
M[1][0] = M[1][2] = M[1][3] = 0.f;
M[2][0] = (r + l) / (r - l);
M[2][1] = (t + b) / (t - b);
M[2][2] = -(f + n) / (f - n);
M[2][3] = -1.f;
M[3][2] = -2.f * (f * n) / (f - n);
M[3][0] = M[3][1] = M[3][3] = 0.f;
}
static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) {
M[0][0] = 2.f / (r - l);
M[0][1] = M[0][2] = M[0][3] = 0.f;
M[1][1] = 2.f / (t - b);
M[1][0] = M[1][2] = M[1][3] = 0.f;
M[2][2] = -2.f / (f - n);
M[2][0] = M[2][1] = M[2][3] = 0.f;
M[3][0] = -(r + l) / (r - l);
M[3][1] = -(t + b) / (t - b);
M[3][2] = -(f + n) / (f - n);
M[3][3] = 1.f;
}
static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) {
/* NOTE: Degrees are an unhandy unit to work with.
* linmath.h uses radians for everything! */
float const a = (float)(1.f / tan(y_fov / 2.f));
m[0][0] = a / aspect;
m[0][1] = 0.f;
m[0][2] = 0.f;
m[0][3] = 0.f;
m[1][0] = 0.f;
m[1][1] = a;
m[1][2] = 0.f;
m[1][3] = 0.f;
m[2][0] = 0.f;
m[2][1] = 0.f;
m[2][2] = -((f + n) / (f - n));
m[2][3] = -1.f;
m[3][0] = 0.f;
m[3][1] = 0.f;
m[3][2] = -((2.f * f * n) / (f - n));
m[3][3] = 0.f;
}
static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) {
/* Adapted from Android's OpenGL Matrix.java. */
/* See the OpenGL GLUT documentation for gluLookAt for a description */
/* of the algorithm. We implement it in a straightforward way: */
/* TODO: The negation of of can be spared by swapping the order of
* operands in the following cross products in the right way. */
vec3 f;
vec3_sub(f, center, eye);
vec3_norm(f, f);
vec3 s;
vec3_mul_cross(s, f, up);
vec3_norm(s, s);
vec3 t;
vec3_mul_cross(t, s, f);
m[0][0] = s[0];
m[0][1] = t[0];
m[0][2] = -f[0];
m[0][3] = 0.f;
m[1][0] = s[1];
m[1][1] = t[1];
m[1][2] = -f[1];
m[1][3] = 0.f;
m[2][0] = s[2];
m[2][1] = t[2];
m[2][2] = -f[2];
m[2][3] = 0.f;
m[3][0] = 0.f;
m[3][1] = 0.f;
m[3][2] = 0.f;
m[3][3] = 1.f;
mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
}
typedef float quat[4];
static inline void quat_identity(quat q) {
q[0] = q[1] = q[2] = 0.f;
q[3] = 1.f;
}
static inline void quat_add(quat r, quat a, quat b) {
int i;
for (i = 0; i < 4; ++i) r[i] = a[i] + b[i];
}
static inline void quat_sub(quat r, quat a, quat b) {
int i;
for (i = 0; i < 4; ++i) r[i] = a[i] - b[i];
}
static inline void quat_mul(quat r, quat p, quat q) {
vec3 w;
vec3_mul_cross(r, p, q);
vec3_scale(w, p, q[3]);
vec3_add(r, r, w);
vec3_scale(w, q, p[3]);
vec3_add(r, r, w);
r[3] = p[3] * q[3] - vec3_mul_inner(p, q);
}
static inline void quat_scale(quat r, quat v, float s) {
int i;
for (i = 0; i < 4; ++i) r[i] = v[i] * s;
}
static inline float quat_inner_product(quat a, quat b) {
float p = 0.f;
int i;
for (i = 0; i < 4; ++i) p += b[i] * a[i];
return p;
}
static inline void quat_conj(quat r, quat q) {
int i;
for (i = 0; i < 3; ++i) r[i] = -q[i];
r[3] = q[3];
}
#define quat_norm vec4_norm
static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) {
quat v_ = {v[0], v[1], v[2], 0.f};
quat_conj(r, q);
quat_norm(r, r);
quat_mul(r, v_, r);
quat_mul(r, q, r);
}
static inline void mat4x4_from_quat(mat4x4 M, quat q) {
float a = q[3];
float b = q[0];
float c = q[1];
float d = q[2];
float a2 = a * a;
float b2 = b * b;
float c2 = c * c;
float d2 = d * d;
M[0][0] = a2 + b2 - c2 - d2;
M[0][1] = 2.f * (b * c + a * d);
M[0][2] = 2.f * (b * d - a * c);
M[0][3] = 0.f;
M[1][0] = 2 * (b * c - a * d);
M[1][1] = a2 - b2 + c2 - d2;
M[1][2] = 2.f * (c * d + a * b);
M[1][3] = 0.f;
M[2][0] = 2.f * (b * d + a * c);
M[2][1] = 2.f * (c * d - a * b);
M[2][2] = a2 - b2 - c2 + d2;
M[2][3] = 0.f;
M[3][0] = M[3][1] = M[3][2] = 0.f;
M[3][3] = 1.f;
}
static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) {
/* XXX: The way this is written only works for othogonal matrices. */
/* TODO: Take care of non-orthogonal case. */
quat_mul_vec3(R[0], q, M[0]);
quat_mul_vec3(R[1], q, M[1]);
quat_mul_vec3(R[2], q, M[2]);
R[3][0] = R[3][1] = R[3][2] = 0.f;
R[3][3] = 1.f;
}
static inline void quat_from_mat4x4(quat q, mat4x4 M) {
float r = 0.f;
int i;
int perm[] = {0, 1, 2, 0, 1};
int *p = perm;
for (i = 0; i < 3; i++) {
float m = M[i][i];
if (m < r) continue;
m = r;
p = &perm[i];
}
r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
if (r < 1e-6) {
q[0] = 1.f;
q[1] = q[2] = q[3] = 0.f;
return;
}
q[0] = r / 2.f;
q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r);
q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r);
q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r);
}
#endif