forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simpleD3D12.cpp
executable file
·509 lines (417 loc) · 19 KB
/
simpleD3D12.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/*
* Copyright 1993-2018 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
#include "stdafx.h"
#include "simpleD3D12.h"
#include <aclapi.h>
//////////////////////////////////////////////
// WindowsSecurityAttributes implementation //
//////////////////////////////////////////////
class WindowsSecurityAttributes {
protected:
SECURITY_ATTRIBUTES m_winSecurityAttributes;
PSECURITY_DESCRIPTOR m_winPSecurityDescriptor;
public:
WindowsSecurityAttributes();
~WindowsSecurityAttributes();
SECURITY_ATTRIBUTES * operator&();
};
WindowsSecurityAttributes::WindowsSecurityAttributes()
{
m_winPSecurityDescriptor = (PSECURITY_DESCRIPTOR)calloc(1, SECURITY_DESCRIPTOR_MIN_LENGTH + 2 * sizeof(void**));
assert(m_winPSecurityDescriptor != (PSECURITY_DESCRIPTOR)NULL);
PSID *ppSID = (PSID *)((PBYTE)m_winPSecurityDescriptor + SECURITY_DESCRIPTOR_MIN_LENGTH);
PACL *ppACL = (PACL *)((PBYTE)ppSID + sizeof(PSID *));
InitializeSecurityDescriptor(m_winPSecurityDescriptor, SECURITY_DESCRIPTOR_REVISION);
SID_IDENTIFIER_AUTHORITY sidIdentifierAuthority = SECURITY_WORLD_SID_AUTHORITY;
AllocateAndInitializeSid(&sidIdentifierAuthority, 1, SECURITY_WORLD_RID, 0, 0, 0, 0, 0, 0, 0, ppSID);
EXPLICIT_ACCESS explicitAccess;
ZeroMemory(&explicitAccess, sizeof(EXPLICIT_ACCESS));
explicitAccess.grfAccessPermissions = STANDARD_RIGHTS_ALL | SPECIFIC_RIGHTS_ALL;
explicitAccess.grfAccessMode = SET_ACCESS;
explicitAccess.grfInheritance = INHERIT_ONLY;
explicitAccess.Trustee.TrusteeForm = TRUSTEE_IS_SID;
explicitAccess.Trustee.TrusteeType = TRUSTEE_IS_WELL_KNOWN_GROUP;
explicitAccess.Trustee.ptstrName = (LPTSTR)*ppSID;
SetEntriesInAcl(1, &explicitAccess, NULL, ppACL);
SetSecurityDescriptorDacl(m_winPSecurityDescriptor, TRUE, *ppACL, FALSE);
m_winSecurityAttributes.nLength = sizeof(m_winSecurityAttributes);
m_winSecurityAttributes.lpSecurityDescriptor = m_winPSecurityDescriptor;
m_winSecurityAttributes.bInheritHandle = TRUE;
}
WindowsSecurityAttributes::~WindowsSecurityAttributes()
{
PSID* ppSID = (PSID*)((PBYTE)m_winPSecurityDescriptor + SECURITY_DESCRIPTOR_MIN_LENGTH);
PACL* ppACL = (PACL*)((PBYTE)ppSID + sizeof(PSID*));
if (*ppSID) {
FreeSid(*ppSID);
}
if (*ppACL) {
LocalFree(*ppACL);
}
free(m_winPSecurityDescriptor);
}
SECURITY_ATTRIBUTES *
WindowsSecurityAttributes::operator&()
{
return &m_winSecurityAttributes;
}
DX12CudaInterop::DX12CudaInterop(UINT width, UINT height, std::string name) :
DX12CudaSample(width, height, name),
m_frameIndex(0),
m_scissorRect(0, 0, static_cast<LONG>(width), static_cast<LONG>(height)),
m_fenceValues{},
m_rtvDescriptorSize(0)
{
m_viewport = { 0.0f, 0.0f, static_cast<float>(width), static_cast<float>(height) };
m_AnimTime = 1.0f;
}
void DX12CudaInterop::OnInit()
{
LoadPipeline();
InitCuda();
LoadAssets();
}
// Load the rendering pipeline dependencies.
void DX12CudaInterop::LoadPipeline()
{
UINT dxgiFactoryFlags = 0;
#if defined(_DEBUG)
// Enable the debug layer (requires the Graphics Tools "optional feature").
// NOTE: Enabling the debug layer after device creation will invalidate the active device.
{
ComPtr<ID3D12Debug> debugController;
if (SUCCEEDED(D3D12GetDebugInterface(IID_PPV_ARGS(&debugController))))
{
debugController->EnableDebugLayer();
// Enable additional debug layers.
dxgiFactoryFlags |= DXGI_CREATE_FACTORY_DEBUG;
}
}
#endif
ComPtr<IDXGIFactory4> factory;
ThrowIfFailed(CreateDXGIFactory2(dxgiFactoryFlags, IID_PPV_ARGS(&factory)));
if (m_useWarpDevice)
{
ComPtr<IDXGIAdapter> warpAdapter;
ThrowIfFailed(factory->EnumWarpAdapter(IID_PPV_ARGS(&warpAdapter)));
ThrowIfFailed(D3D12CreateDevice(
warpAdapter.Get(),
D3D_FEATURE_LEVEL_11_0,
IID_PPV_ARGS(&m_device)
));
}
else
{
ComPtr<IDXGIAdapter1> hardwareAdapter;
GetHardwareAdapter(factory.Get(), &hardwareAdapter);
ThrowIfFailed(D3D12CreateDevice(
hardwareAdapter.Get(),
D3D_FEATURE_LEVEL_11_0,
IID_PPV_ARGS(&m_device)
));
DXGI_ADAPTER_DESC1 desc;
hardwareAdapter->GetDesc1(&desc);
m_dx12deviceluid = desc.AdapterLuid;
}
// Describe and create the command queue.
D3D12_COMMAND_QUEUE_DESC queueDesc = {};
queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
ThrowIfFailed(m_device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&m_commandQueue)));
// Describe and create the swap chain.
DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {};
swapChainDesc.BufferCount = FrameCount;
swapChainDesc.Width = m_width;
swapChainDesc.Height = m_height;
swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
swapChainDesc.SampleDesc.Count = 1;
ComPtr<IDXGISwapChain1> swapChain;
ThrowIfFailed(factory->CreateSwapChainForHwnd(
m_commandQueue.Get(), // Swap chain needs the queue so that it can force a flush on it.
Win32Application::GetHwnd(),
&swapChainDesc,
nullptr,
nullptr,
&swapChain
));
// This sample does not support fullscreen transitions.
ThrowIfFailed(factory->MakeWindowAssociation(Win32Application::GetHwnd(), DXGI_MWA_NO_ALT_ENTER));
ThrowIfFailed(swapChain.As(&m_swapChain));
m_frameIndex = m_swapChain->GetCurrentBackBufferIndex();
// Create descriptor heaps.
{
// Describe and create a render target view (RTV) descriptor heap.
D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc = {};
rtvHeapDesc.NumDescriptors = FrameCount;
rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
ThrowIfFailed(m_device->CreateDescriptorHeap(&rtvHeapDesc, IID_PPV_ARGS(&m_rtvHeap)));
m_rtvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
}
// Create frame resources.
{
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
// Create a RTV and a command allocator for each frame.
for (UINT n = 0; n < FrameCount; n++)
{
ThrowIfFailed(m_swapChain->GetBuffer(n, IID_PPV_ARGS(&m_renderTargets[n])));
m_device->CreateRenderTargetView(m_renderTargets[n].Get(), nullptr, rtvHandle);
rtvHandle.Offset(1, m_rtvDescriptorSize);
ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&m_commandAllocators[n])));
}
}
}
void DX12CudaInterop::InitCuda()
{
int num_cuda_devices = 0;
checkCudaErrors(cudaGetDeviceCount(&num_cuda_devices));
if (!num_cuda_devices)
{
throw std::exception("No CUDA Devices found");
}
for (UINT devId = 0; devId < num_cuda_devices; devId++)
{
cudaDeviceProp devProp;
checkCudaErrors(cudaGetDeviceProperties(&devProp, devId));
if ((memcmp(&m_dx12deviceluid.LowPart, devProp.luid, sizeof(m_dx12deviceluid.LowPart)) == 0) && (memcmp(&m_dx12deviceluid.HighPart, devProp.luid + sizeof(m_dx12deviceluid.LowPart), sizeof(m_dx12deviceluid.HighPart)) == 0))
{
checkCudaErrors(cudaSetDevice(devId));
m_cudaDeviceID = devId;
m_nodeMask = devProp.luidDeviceNodeMask;
checkCudaErrors(cudaStreamCreate(&m_streamToRun));
printf("CUDA Device Used [%d] %s\n", devId, devProp.name);
break;
}
}
}
// Load the sample assets.
void DX12CudaInterop::LoadAssets()
{
// Create a root signature.
{
CD3DX12_DESCRIPTOR_RANGE range;
CD3DX12_ROOT_PARAMETER parameter;
range.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
parameter.InitAsDescriptorTable(1, &range, D3D12_SHADER_VISIBILITY_VERTEX);
D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT | // Only the input assembler stage needs access to the constant buffer.
D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;
CD3DX12_ROOT_SIGNATURE_DESC descRootSignature;
descRootSignature.Init(1, ¶meter, 0, nullptr, rootSignatureFlags);
ComPtr<ID3DBlob> pSignature;
ComPtr<ID3DBlob> pError;
ThrowIfFailed(D3D12SerializeRootSignature(&descRootSignature, D3D_ROOT_SIGNATURE_VERSION_1, pSignature.GetAddressOf(), pError.GetAddressOf()));
ThrowIfFailed(m_device->CreateRootSignature(0, pSignature->GetBufferPointer(), pSignature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
}
// Create the pipeline state, which includes compiling and loading shaders.
{
ComPtr<ID3DBlob> vertexShader;
ComPtr<ID3DBlob> pixelShader;
#if defined(_DEBUG)
// Enable better shader debugging with the graphics debugging tools.
UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
UINT compileFlags = 0;
#endif
std::wstring filePath = GetAssetFullPath("shaders.hlsl");
LPCWSTR result = filePath.c_str();
ThrowIfFailed(D3DCompileFromFile(result, nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
ThrowIfFailed(D3DCompileFromFile(result, nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));
// Define the vertex input layout.
D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
};
// Describe and create the graphics pipeline state object (PSO).
D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
psoDesc.pRootSignature = m_rootSignature.Get();
psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
psoDesc.SampleMask = UINT_MAX;
psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_POINT;
psoDesc.NumRenderTargets = 1;
psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
psoDesc.SampleDesc.Count = 1;
ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
}
// Create the command list.
ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
// Command lists are created in the recording state, but there is nothing
// to record yet. The main loop expects it to be closed, so close it now.
ThrowIfFailed(m_commandList->Close());
// Create the vertex buffer.
{
// Define the geometry for a triangle.
vertBufWidth = m_width/2;
vertBufHeight = m_height/2;
const UINT vertexBufferSize = sizeof(Vertex)*vertBufWidth*vertBufHeight;
ThrowIfFailed(m_device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_SHARED,
&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER,
nullptr,
IID_PPV_ARGS(&m_vertexBuffer)));
// Initialize the vertex buffer view.
m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
m_vertexBufferView.StrideInBytes = sizeof(Vertex);
m_vertexBufferView.SizeInBytes = vertexBufferSize;
HANDLE sharedHandle;
WindowsSecurityAttributes windowsSecurityAttributes;
LPCWSTR name = NULL;
ThrowIfFailed(m_device->CreateSharedHandle(m_vertexBuffer.Get(), &windowsSecurityAttributes, GENERIC_ALL, name, &sharedHandle));
D3D12_RESOURCE_ALLOCATION_INFO d3d12ResourceAllocationInfo;
d3d12ResourceAllocationInfo = m_device->GetResourceAllocationInfo(m_nodeMask, 1, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize));
size_t actualSize = d3d12ResourceAllocationInfo.SizeInBytes;
size_t alignment = d3d12ResourceAllocationInfo.Alignment;
cudaExternalMemoryHandleDesc externalMemoryHandleDesc;
memset(&externalMemoryHandleDesc, 0, sizeof(externalMemoryHandleDesc));
externalMemoryHandleDesc.type = cudaExternalMemoryHandleTypeD3D12Resource;
externalMemoryHandleDesc.handle.win32.handle = sharedHandle;
externalMemoryHandleDesc.size = actualSize;
externalMemoryHandleDesc.flags = cudaExternalMemoryDedicated;
checkCudaErrors(cudaImportExternalMemory(&m_externalMemory, &externalMemoryHandleDesc));
cudaExternalMemoryBufferDesc externalMemoryBufferDesc;
memset(&externalMemoryBufferDesc, 0, sizeof(externalMemoryBufferDesc));
externalMemoryBufferDesc.offset = 0;
externalMemoryBufferDesc.size = vertexBufferSize;
externalMemoryBufferDesc.flags = 0;
checkCudaErrors(cudaExternalMemoryGetMappedBuffer(&m_cudaDevVertptr, m_externalMemory, &externalMemoryBufferDesc));
RunSineWaveKernel(vertBufWidth, vertBufHeight, (Vertex *)m_cudaDevVertptr, m_streamToRun, 1.0f);
checkCudaErrors(cudaStreamSynchronize(m_streamToRun));
}
// Create synchronization objects and wait until assets have been uploaded to the GPU.
{
ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_SHARED, IID_PPV_ARGS(&m_fence)));
cudaExternalSemaphoreHandleDesc externalSemaphoreHandleDesc;
memset(&externalSemaphoreHandleDesc, 0, sizeof(externalSemaphoreHandleDesc));
WindowsSecurityAttributes windowsSecurityAttributes;
LPCWSTR name = NULL;
HANDLE sharedHandle;
externalSemaphoreHandleDesc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
m_device->CreateSharedHandle(m_fence.Get(), &windowsSecurityAttributes, GENERIC_ALL, name, &sharedHandle);
externalSemaphoreHandleDesc.handle.win32.handle = (void *)sharedHandle;
externalSemaphoreHandleDesc.flags = 0;
checkCudaErrors(cudaImportExternalSemaphore(&m_externalSemaphore, &externalSemaphoreHandleDesc));
m_fenceValues[m_frameIndex]++;
// Create an event handle to use for frame synchronization.
m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
if (m_fenceEvent == nullptr)
{
ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
}
// Wait for the command list to execute; we are reusing the same command
// list in our main loop but for now, we just want to wait for setup to
// complete before continuing.
WaitForGpu();
}
}
// Render the scene.
void DX12CudaInterop::OnRender()
{
// Record all the commands we need to render the scene into the command list.
PopulateCommandList();
// Execute the command list.
ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
// Present the frame.
ThrowIfFailed(m_swapChain->Present(1, 0));
// Schedule a Signal command in the queue.
const UINT64 currentFenceValue = m_fenceValues[m_frameIndex];
ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), currentFenceValue));
MoveToNextFrame();
}
void DX12CudaInterop::OnDestroy()
{
// Ensure that the GPU is no longer referencing resources that are about to be
// cleaned up by the destructor.
WaitForGpu();
checkCudaErrors(cudaDestroyExternalSemaphore(m_externalSemaphore));
checkCudaErrors(cudaDestroyExternalMemory(m_externalMemory));
CloseHandle(m_fenceEvent);
}
void DX12CudaInterop::PopulateCommandList()
{
// Command list allocators can only be reset when the associated
// command lists have finished execution on the GPU; apps should use
// fences to determine GPU execution progress.
ThrowIfFailed(m_commandAllocators[m_frameIndex]->Reset());
// However, when ExecuteCommandList() is called on a particular command
// list, that command list can then be reset at any time and must be before
// re-recording.
ThrowIfFailed(m_commandList->Reset(m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get()));
m_commandList->SetGraphicsRootSignature(m_rootSignature.Get());
// Set necessary state.
m_commandList->RSSetViewports(1, &m_viewport);
m_commandList->RSSetScissorRects(1, &m_scissorRect);
// Indicate that the back buffer will be used as a render target.
m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_renderTargets[m_frameIndex].Get(), D3D12_RESOURCE_STATE_PRESENT, D3D12_RESOURCE_STATE_RENDER_TARGET));
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart(), m_frameIndex, m_rtvDescriptorSize);
m_commandList->OMSetRenderTargets(1, &rtvHandle, FALSE, nullptr);
// Record commands.
const float clearColor[] = { 0.0f, 0.2f, 0.4f, 1.0f };
m_commandList->ClearRenderTargetView(rtvHandle, clearColor, 0, nullptr);
m_commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_POINTLIST);
m_commandList->IASetVertexBuffers(0, 1, &m_vertexBufferView);
m_commandList->DrawInstanced(vertBufHeight*vertBufWidth, 1, 0, 0);
// Indicate that the back buffer will now be used to present.
m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_renderTargets[m_frameIndex].Get(), D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_PRESENT));
ThrowIfFailed(m_commandList->Close());
}
// Wait for pending GPU work to complete.
void DX12CudaInterop::WaitForGpu()
{
// Schedule a Signal command in the queue.
ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), m_fenceValues[m_frameIndex]));
// Wait until the fence has been processed.
ThrowIfFailed(m_fence->SetEventOnCompletion(m_fenceValues[m_frameIndex], m_fenceEvent));
WaitForSingleObjectEx(m_fenceEvent, INFINITE, FALSE);
// Increment the fence value for the current frame.
m_fenceValues[m_frameIndex]++;
}
// Prepare to render the next frame.
void DX12CudaInterop::MoveToNextFrame()
{
const UINT64 currentFenceValue = m_fenceValues[m_frameIndex];
cudaExternalSemaphoreWaitParams externalSemaphoreWaitParams;
memset(&externalSemaphoreWaitParams, 0, sizeof(externalSemaphoreWaitParams));
externalSemaphoreWaitParams.params.fence.value = currentFenceValue;
externalSemaphoreWaitParams.flags = 0;
checkCudaErrors(cudaWaitExternalSemaphoresAsync(&m_externalSemaphore, &externalSemaphoreWaitParams, 1, m_streamToRun));
m_AnimTime += 0.01f;
RunSineWaveKernel(vertBufWidth, vertBufHeight, (Vertex *)m_cudaDevVertptr, m_streamToRun, m_AnimTime);
cudaExternalSemaphoreSignalParams externalSemaphoreSignalParams;
memset(&externalSemaphoreSignalParams, 0, sizeof(externalSemaphoreSignalParams));
m_fenceValues[m_frameIndex] = currentFenceValue + 1;
externalSemaphoreSignalParams.params.fence.value = m_fenceValues[m_frameIndex];
externalSemaphoreSignalParams.flags = 0;
checkCudaErrors(cudaSignalExternalSemaphoresAsync(&m_externalSemaphore, &externalSemaphoreSignalParams, 1, m_streamToRun));
// Update the frame index.
m_frameIndex = m_swapChain->GetCurrentBackBufferIndex();
// If the next frame is not ready to be rendered yet, wait until it is ready.
if (m_fence->GetCompletedValue() < m_fenceValues[m_frameIndex])
{
ThrowIfFailed(m_fence->SetEventOnCompletion(m_fenceValues[m_frameIndex], m_fenceEvent));
WaitForSingleObjectEx(m_fenceEvent, INFINITE, FALSE);
}
// Set the fence value for the next frame.
m_fenceValues[m_frameIndex] = currentFenceValue + 2;
}