forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simpleCudaGraphs.cu
399 lines (323 loc) · 14.4 KB
/
simpleCudaGraphs.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cooperative_groups.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include <vector>
namespace cg = cooperative_groups;
#define THREADS_PER_BLOCK 512
#define GRAPH_LAUNCH_ITERATIONS 3
typedef struct callBackData {
const char *fn_name;
double *data;
} callBackData_t;
__global__ void reduce(float *inputVec, double *outputVec, size_t inputSize,
size_t outputSize) {
__shared__ double tmp[THREADS_PER_BLOCK];
cg::thread_block cta = cg::this_thread_block();
size_t globaltid = blockIdx.x * blockDim.x + threadIdx.x;
double temp_sum = 0.0;
for (int i = globaltid; i < inputSize; i += gridDim.x * blockDim.x) {
temp_sum += (double)inputVec[i];
}
tmp[cta.thread_rank()] = temp_sum;
cg::sync(cta);
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
double beta = temp_sum;
double temp;
for (int i = tile32.size() / 2; i > 0; i >>= 1) {
if (tile32.thread_rank() < i) {
temp = tmp[cta.thread_rank() + i];
beta += temp;
tmp[cta.thread_rank()] = beta;
}
cg::sync(tile32);
}
cg::sync(cta);
if (cta.thread_rank() == 0 && blockIdx.x < outputSize) {
beta = 0.0;
for (int i = 0; i < cta.size(); i += tile32.size()) {
beta += tmp[i];
}
outputVec[blockIdx.x] = beta;
}
}
__global__ void reduceFinal(double *inputVec, double *result,
size_t inputSize) {
__shared__ double tmp[THREADS_PER_BLOCK];
cg::thread_block cta = cg::this_thread_block();
size_t globaltid = blockIdx.x * blockDim.x + threadIdx.x;
double temp_sum = 0.0;
for (int i = globaltid; i < inputSize; i += gridDim.x * blockDim.x) {
temp_sum += (double)inputVec[i];
}
tmp[cta.thread_rank()] = temp_sum;
cg::sync(cta);
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
// do reduction in shared mem
if ((blockDim.x >= 512) && (cta.thread_rank() < 256)) {
tmp[cta.thread_rank()] = temp_sum = temp_sum + tmp[cta.thread_rank() + 256];
}
cg::sync(cta);
if ((blockDim.x >= 256) && (cta.thread_rank() < 128)) {
tmp[cta.thread_rank()] = temp_sum = temp_sum + tmp[cta.thread_rank() + 128];
}
cg::sync(cta);
if ((blockDim.x >= 128) && (cta.thread_rank() < 64)) {
tmp[cta.thread_rank()] = temp_sum = temp_sum + tmp[cta.thread_rank() + 64];
}
cg::sync(cta);
if (cta.thread_rank() < 32) {
// Fetch final intermediate sum from 2nd warp
if (blockDim.x >= 64) temp_sum += tmp[cta.thread_rank() + 32];
// Reduce final warp using shuffle
for (int offset = tile32.size() / 2; offset > 0; offset /= 2) {
temp_sum += tile32.shfl_down(temp_sum, offset);
}
}
// write result for this block to global mem
if (cta.thread_rank() == 0) result[0] = temp_sum;
}
void init_input(float *a, size_t size) {
for (size_t i = 0; i < size; i++) a[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
void CUDART_CB myHostNodeCallback(void *data) {
// Check status of GPU after stream operations are done
callBackData_t *tmp = (callBackData_t *)(data);
// checkCudaErrors(tmp->status);
double *result = (double *)(tmp->data);
char *function = (char *)(tmp->fn_name);
printf("[%s] Host callback final reduced sum = %lf\n", function, *result);
*result = 0.0; // reset the result
}
void cudaGraphsManual(float *inputVec_h, float *inputVec_d, double *outputVec_d,
double *result_d, size_t inputSize, size_t numOfBlocks) {
cudaStream_t streamForGraph;
cudaGraph_t graph;
std::vector<cudaGraphNode_t> nodeDependencies;
cudaGraphNode_t memcpyNode, kernelNode, memsetNode;
double result_h = 0.0;
checkCudaErrors(cudaStreamCreate(&streamForGraph));
cudaKernelNodeParams kernelNodeParams = {0};
cudaMemcpy3DParms memcpyParams = {0};
cudaMemsetParams memsetParams = {0};
memcpyParams.srcArray = NULL;
memcpyParams.srcPos = make_cudaPos(0, 0, 0);
memcpyParams.srcPtr =
make_cudaPitchedPtr(inputVec_h, sizeof(float) * inputSize, inputSize, 1);
memcpyParams.dstArray = NULL;
memcpyParams.dstPos = make_cudaPos(0, 0, 0);
memcpyParams.dstPtr =
make_cudaPitchedPtr(inputVec_d, sizeof(float) * inputSize, inputSize, 1);
memcpyParams.extent = make_cudaExtent(sizeof(float) * inputSize, 1, 1);
memcpyParams.kind = cudaMemcpyHostToDevice;
memsetParams.dst = (void *)outputVec_d;
memsetParams.value = 0;
memsetParams.pitch = 0;
memsetParams.elementSize = sizeof(float); // elementSize can be max 4 bytes
memsetParams.width = numOfBlocks * 2;
memsetParams.height = 1;
checkCudaErrors(cudaGraphCreate(&graph, 0));
checkCudaErrors(
cudaGraphAddMemcpyNode(&memcpyNode, graph, NULL, 0, &memcpyParams));
checkCudaErrors(
cudaGraphAddMemsetNode(&memsetNode, graph, NULL, 0, &memsetParams));
nodeDependencies.push_back(memsetNode);
nodeDependencies.push_back(memcpyNode);
void *kernelArgs[4] = {(void *)&inputVec_d, (void *)&outputVec_d, &inputSize,
&numOfBlocks};
kernelNodeParams.func = (void *)reduce;
kernelNodeParams.gridDim = dim3(numOfBlocks, 1, 1);
kernelNodeParams.blockDim = dim3(THREADS_PER_BLOCK, 1, 1);
kernelNodeParams.sharedMemBytes = 0;
kernelNodeParams.kernelParams = (void **)kernelArgs;
kernelNodeParams.extra = NULL;
checkCudaErrors(
cudaGraphAddKernelNode(&kernelNode, graph, nodeDependencies.data(),
nodeDependencies.size(), &kernelNodeParams));
nodeDependencies.clear();
nodeDependencies.push_back(kernelNode);
memset(&memsetParams, 0, sizeof(memsetParams));
memsetParams.dst = result_d;
memsetParams.value = 0;
memsetParams.elementSize = sizeof(float);
memsetParams.width = 2;
memsetParams.height = 1;
checkCudaErrors(
cudaGraphAddMemsetNode(&memsetNode, graph, NULL, 0, &memsetParams));
nodeDependencies.push_back(memsetNode);
memset(&kernelNodeParams, 0, sizeof(kernelNodeParams));
kernelNodeParams.func = (void *)reduceFinal;
kernelNodeParams.gridDim = dim3(1, 1, 1);
kernelNodeParams.blockDim = dim3(THREADS_PER_BLOCK, 1, 1);
kernelNodeParams.sharedMemBytes = 0;
void *kernelArgs2[3] = {(void *)&outputVec_d, (void *)&result_d,
&numOfBlocks};
kernelNodeParams.kernelParams = kernelArgs2;
kernelNodeParams.extra = NULL;
checkCudaErrors(
cudaGraphAddKernelNode(&kernelNode, graph, nodeDependencies.data(),
nodeDependencies.size(), &kernelNodeParams));
nodeDependencies.clear();
nodeDependencies.push_back(kernelNode);
memset(&memcpyParams, 0, sizeof(memcpyParams));
memcpyParams.srcArray = NULL;
memcpyParams.srcPos = make_cudaPos(0, 0, 0);
memcpyParams.srcPtr = make_cudaPitchedPtr(result_d, sizeof(double), 1, 1);
memcpyParams.dstArray = NULL;
memcpyParams.dstPos = make_cudaPos(0, 0, 0);
memcpyParams.dstPtr = make_cudaPitchedPtr(&result_h, sizeof(double), 1, 1);
memcpyParams.extent = make_cudaExtent(sizeof(double), 1, 1);
memcpyParams.kind = cudaMemcpyDeviceToHost;
checkCudaErrors(
cudaGraphAddMemcpyNode(&memcpyNode, graph, nodeDependencies.data(),
nodeDependencies.size(), &memcpyParams));
nodeDependencies.clear();
nodeDependencies.push_back(memcpyNode);
cudaGraphNode_t hostNode;
cudaHostNodeParams hostParams = {0};
hostParams.fn = myHostNodeCallback;
callBackData_t hostFnData;
hostFnData.data = &result_h;
hostFnData.fn_name = "cudaGraphsManual";
hostParams.userData = &hostFnData;
checkCudaErrors(cudaGraphAddHostNode(&hostNode, graph,
nodeDependencies.data(),
nodeDependencies.size(), &hostParams));
cudaGraphNode_t *nodes = NULL;
size_t numNodes = 0;
checkCudaErrors(cudaGraphGetNodes(graph, nodes, &numNodes));
printf("\nNum of nodes in the graph created manually = %zu\n", numNodes);
cudaGraphExec_t graphExec;
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
cudaGraph_t clonedGraph;
cudaGraphExec_t clonedGraphExec;
checkCudaErrors(cudaGraphClone(&clonedGraph, graph));
checkCudaErrors(
cudaGraphInstantiate(&clonedGraphExec, clonedGraph, NULL, NULL, 0));
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
printf("Cloned Graph Output.. \n");
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(clonedGraphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphExecDestroy(clonedGraphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaGraphDestroy(clonedGraph));
checkCudaErrors(cudaStreamDestroy(streamForGraph));
}
void cudaGraphsUsingStreamCapture(float *inputVec_h, float *inputVec_d,
double *outputVec_d, double *result_d,
size_t inputSize, size_t numOfBlocks) {
cudaStream_t stream1, stream2, streamForGraph;
cudaEvent_t reduceKernelEvent;
cudaGraph_t graph;
double result_h = 0.0;
checkCudaErrors(cudaStreamCreate(&stream1));
checkCudaErrors(cudaStreamCreate(&stream2));
checkCudaErrors(cudaStreamCreate(&streamForGraph));
checkCudaErrors(cudaEventCreate(&reduceKernelEvent));
checkCudaErrors(cudaStreamBeginCapture(stream1));
checkCudaErrors(cudaMemcpyAsync(inputVec_d, inputVec_h,
sizeof(float) * inputSize, cudaMemcpyDefault,
stream1));
checkCudaErrors(
cudaMemsetAsync(outputVec_d, 0, sizeof(double) * numOfBlocks, stream1));
reduce<<<numOfBlocks, THREADS_PER_BLOCK, 0, stream1>>>(
inputVec_d, outputVec_d, inputSize, numOfBlocks);
checkCudaErrors(cudaEventRecord(reduceKernelEvent, stream1));
checkCudaErrors(cudaStreamWaitEvent(stream2, reduceKernelEvent, 0));
checkCudaErrors(cudaMemsetAsync(result_d, 0, sizeof(double), stream2));
reduceFinal<<<1, THREADS_PER_BLOCK, 0, stream2>>>(outputVec_d, result_d,
numOfBlocks);
checkCudaErrors(cudaMemcpyAsync(&result_h, result_d, sizeof(double),
cudaMemcpyDefault, stream2));
checkCudaErrors(cudaEventRecord(reduceKernelEvent, stream2));
checkCudaErrors(cudaStreamWaitEvent(stream1, reduceKernelEvent, 0));
callBackData_t hostFnData = {0};
hostFnData.data = &result_h;
hostFnData.fn_name = "cudaGraphsUsingStreamCapture";
cudaHostFn_t fn = myHostNodeCallback;
checkCudaErrors(cudaLaunchHostFunc(stream1, fn, &hostFnData));
checkCudaErrors(cudaStreamEndCapture(stream1, &graph));
cudaGraphNode_t *nodes = NULL;
size_t numNodes = 0;
checkCudaErrors(cudaGraphGetNodes(graph, nodes, &numNodes));
printf("\nNum of nodes in the graph created using stream capture API = %zu\n",
numNodes);
cudaGraphExec_t graphExec;
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
cudaGraph_t clonedGraph;
cudaGraphExec_t clonedGraphExec;
checkCudaErrors(cudaGraphClone(&clonedGraph, graph));
checkCudaErrors(
cudaGraphInstantiate(&clonedGraphExec, clonedGraph, NULL, NULL, 0));
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
printf("Cloned Graph Output.. \n");
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(clonedGraphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphExecDestroy(clonedGraphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaGraphDestroy(clonedGraph));
checkCudaErrors(cudaStreamDestroy(stream1));
checkCudaErrors(cudaStreamDestroy(stream2));
checkCudaErrors(cudaStreamDestroy(streamForGraph));
}
int main(int argc, char **argv) {
size_t size = 1 << 24; // number of elements to reduce
size_t maxBlocks = 512;
// This will pick the best possible CUDA capable device
int devID = findCudaDevice(argc, (const char **)argv);
printf("%zu elements\n", size);
printf("threads per block = %d\n", THREADS_PER_BLOCK);
printf("Graph Launch iterations = %d\n", GRAPH_LAUNCH_ITERATIONS);
float *inputVec_d = NULL, *inputVec_h = NULL;
double *outputVec_d = NULL, *result_d;
inputVec_h = (float *)malloc(sizeof(float) * size);
checkCudaErrors(cudaMalloc(&inputVec_d, sizeof(float) * size));
checkCudaErrors(cudaMalloc(&outputVec_d, sizeof(double) * maxBlocks));
checkCudaErrors(cudaMalloc(&result_d, sizeof(double)));
init_input(inputVec_h, size);
cudaGraphsManual(inputVec_h, inputVec_d, outputVec_d, result_d, size,
maxBlocks);
cudaGraphsUsingStreamCapture(inputVec_h, inputVec_d, outputVec_d, result_d,
size, maxBlocks);
checkCudaErrors(cudaFree(inputVec_d));
checkCudaErrors(cudaFree(outputVec_d));
checkCudaErrors(cudaFree(result_d));
return EXIT_SUCCESS;
}