forked from Xiangyi1996/PPNet-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
117 lines (100 loc) · 2.91 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""Experiment Configuration"""
import os
import re
import glob
import itertools
import sacred
from sacred import Experiment
from sacred.observers import FileStorageObserver
from sacred.utils import apply_backspaces_and_linefeeds
sacred.SETTINGS['CONFIG']['READ_ONLY_CONFIG'] = False
sacred.SETTINGS.CAPTURE_MODE = 'no'
ex = Experiment('PANet')
ex.captured_out_filter = apply_backspaces_and_linefeeds
source_folders = ['.', './dataloaders', './models', './util']
sources_to_save = list(itertools.chain.from_iterable(
[glob.glob(f'{folder}/*.py') for folder in source_folders]))
for source_file in sources_to_save:
ex.add_source_file(source_file)
import datetime
@ex.config
def cfg():
"""Default configurations"""
input_size = (417, 417)
seed = 1234
cuda_visable = '0,1,2,3'
gpu_id = 2
mode = 'test' # 'train' or 'test'
if mode == 'train':
dataset = 'VOC'
n_steps = 40000
num_workers = 8
label_sets = 0
batch_size = 1
lr_milestones = [10000, 20000, 30000]
align_loss_scaler = 1
base_loss_scaler = 1
ignore_label = 255
print_interval = 100
save_pred_every = 4000
evaluate_interval = 4000
n_runs = 1
eval = 0
eval_dir='.'
center = 5
ckpt_dir = '.'
skip_ways = 'v1'
output_sem_size = 417
infer_max_iters = 1000
share = 3
pt_lambda = 0.8
un_bs = 3
topk = 30
global_const = 0.8
fix = False
align_loss_cs_scaler = 0
segments = False
p_value_thres = 0
resnet = 101
output_dir='.'
model = {
'part': True,
'semi': False,
'sem': False,
'resnet': True,
'slic': False,
}
task = {
'n_ways': 1,
'n_shots': 1,
'n_queries': 1,
'n_unlabels': 0,
}
optim = {
'lr': 1e-3,
'momentum': 0.9,
'weight_decay': 0.0005,
}
slic = {
'num_components': 80,
'compactness': 80,
}
else:
raise ValueError('Wrong configuration for "mode" !')
exp_str = '_'.join(
[dataset, ]
+ [key for key, value in model.items() if value]
+ [f'w{task["n_ways"]}s{task["n_shots"]}_lr{optim["lr"]}_cen{center}_F{label_sets}'])
path = {
'log_dir': './outputs/PANet/',
'init_path': './FewShotSeg-dataset/cache/vgg16-397923af.pth',
'VOC':{'data_dir': './FewShotSeg-dataset/Pascal/VOC2012/',
'data_split': 'trainaug',},
}
@ex.config_hook
def add_observer(config, command_name, logger):
"""A hook fucntion to add observer"""
exp_name = f'{ex.path}_{config["exp_str"]}'
observer = FileStorageObserver.create(os.path.join(config['path']['log_dir'], exp_name))
ex.observers.append(observer)
return config