-
Notifications
You must be signed in to change notification settings - Fork 3
/
MacroModel_simAnalysis_historical(2).R
587 lines (427 loc) · 18.9 KB
/
MacroModel_simAnalysis_historical(2).R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# Simulating stock returns and bond returns based on GDP regimes
#**********************************************************************
# Notes ####
#**********************************************************************
# A discussion of ARIMA transfer function models:
# https://robjhyndman.com/hyndsight/arimax/
# Note
# Multivariate Normal
# https://www.r-bloggers.com/simulating-from-the-bivariate-normal-distribution-in-r/
## Issues:
# Simulate ARIMA process with initial values and regressors
#**********************************************************************
# Packages ####
#**********************************************************************
library(markovchain) # Markov chain object
#library(MASS) # multivariate normal generator, must be loaded before tidyverse, otherwise 'select' will be masked
library(broom)
library(readxl)
library(magrittr)
library(stringr)
library(forcats)
library(grid)
library(gridExtra)
library(scales)
library(knitr)
# packages for time series modeling
library(astsa) # companion package
library(TSA) # companion package; arimax: flexible transfer function model
library(tseries) #
library(forecast) # Arima
library(MSwM)
library(TTR)
#library(MSBVAR)
# packages for ts
library(zoo)
library(xts)
library(timetk)
library(tidyquant)
library(lubridate)
library(feather)
library(psych) # describe
library(xlsx)
library(qqplotr)
library(tidyverse)
# check tidyquant, timetk, sweep (broom ), tibbletime
# Intro to zoo cran.r-project.org/web/packages/zoo/vignettes/zoo-quickref.pdf
# sweep: http://www.business-science.io/code-tools/2017/07/09/sweep-0-1-0.html
#**********************************************************************
# Global settings ####
#**********************************************************************
dir_data_raw <- "data_raw/"
dir_data_out <- "data_out/"
dir_outputs <- "outputs_report/"
# dir_outputs <- "techReport_out"
# NBER recession periods, post-WWII
recessionPeriods <-
matrix(c(
1953+2/4, 1954+2/4,
1957+3/4, 1958+2/4,
1960+2/4, 1961+1/4,
1969+4/4, 1970+4/4,
1973+4/4, 1975+1/4,
1980+1/4, 1980+3/4,
1981+3/4, 1982+4/4,
1990+3/4, 1991+1/4,
2001+1/4, 2001+4/4,
2007+4/4, 2009+2/4
) , ncol = 2, byrow = T) %>%
as.data.frame() %>%
rename(peak = V1,
trough = V2) %>%
mutate(peak = peak - 1/4,
trough = trough - 1/4)
get_geoReturn <- function(x) prod(1 + x)^(1/length(x)) - 1
RIG.theme <- function() {
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.y = element_line(size = 0.5, color = "gray80"),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0, size = 9)
)
}
RIG.themeLite <- function() {
theme(
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0, size = 9)
)
}
#**********************************************************************
# Loading Data ####
#**********************************************************************
# Loading saved data
load(paste0(dir_data_out, "dataAll.RData"))
load(paste0(dir_data_out, "MacroModel_sim_results_historical_real.RData"))
sim_results <- MacroModel_sim_results_historical_real
#**********************************************************************
# Data ####
#**********************************************************************
# Stock return and volatility with different data frequencies
# Stock returns:
# log total return (price appreciation + dividend)
# Equity premium calculated with different measures of risk free rate
# Frequencies:
# 1. Monthly
# 2. Quarterly
# 3. Yearly
get_logReturn <- function(x){
if(any(x <= 0, na.rm = TRUE)) stop("Nagative value(s)")
log(x/dplyr::lag(x))
}
Vars <- c("year", "month", "yearMon",
"TBill3m_FRED",
"Tbond10y_FRED",
"LCapStock_TRI",
"LCapStock_TRI_real",
"LCapStock_CAI",
"CBond_TRI",
"CBond_TRI_real",
"LTGBond_TRI",
"Inflation_Index",
"GDP_FRED")
fn <- function(df, year_range, rolling_width, freq){
#df_stock_m <-
df %>%
select(one_of(Vars)) %>%
filter(year %in% year_range) %>%
mutate(return_tot = (1 + get_logReturn(LCapStock_TRI))^freq - 1,
return_tot_real = (1 + get_logReturn(LCapStock_TRI_real))^freq - 1,
dl_gdp = (1 + get_logReturn(GDP_FRED))^freq - 1,
dl_cbond = (1 + get_logReturn(CBond_TRI))^freq - 1,
dl_cbond_real = (1 + get_logReturn(CBond_TRI_real))^freq - 1,
dl_gbond = (1 + get_logReturn(LTGBond_TRI))^freq - 1,
return_tot_o = get_logReturn(LCapStock_TRI),
return_tot_real_o = get_logReturn(LCapStock_TRI_real),
dl_gdp_o = get_logReturn(GDP_FRED),
dl_cbond_o = get_logReturn(CBond_TRI),
dl_cbond_real_o = get_logReturn(CBond_TRI_real),
dl_gbond_o = get_logReturn(LTGBond_TRI),
TBill3m_FRED = TBill3m_FRED/100,
Tbond10y_FRED = Tbond10y_FRED/100,
ERP_3m = return_tot - TBill3m_FRED,
ERP_10y = return_tot - Tbond10y_FRED) %>%
mutate(sd_return = rollapply(return_tot, rolling_width, sd, align = "right", fill = NA),
mean_return = rollapply(return_tot, rolling_width, mean, align = "right", fill = NA),
sd_return_real = rollapply(return_tot_real, rolling_width, sd, align = "right", fill = NA),
mean_return_real = rollapply(return_tot_real, rolling_width, mean, align = "right", fill = NA),
sd_ERP_3m = rollapply(ERP_3m, rolling_width, sd, align = "right", fill = NA),
mean_ERP_3m = rollapply(ERP_3m, rolling_width, mean, align = "right", fill = NA),
sd_ERP_10y = rollapply(ERP_10y, rolling_width, sd, align = "right", fill = NA),
mean_ERP_10y = rollapply(ERP_10y, rolling_width, mean, align = "right", fill = NA),
sd_cbond = rollapply(dl_cbond, rolling_width, sd, align = "right", fill = NA),
mean_cbond = rollapply(dl_cbond, rolling_width, mean, align = "right", fill = NA),
sd_gbond = rollapply(dl_gbond, rolling_width, sd, align = "right", fill = NA),
mean_gbond = rollapply(dl_gbond, rolling_width, mean, align = "right", fill = NA),
mean_gdp = rollapply(dl_gdp, rolling_width, mean, align = "right", fill = NA)
)
}
df_stock_m <- fn(df_dataAll, 1953:2015, 12, 12)
df_stock_q <- fn(df_dataAll_q, 1953:2015, 12, 4)
df_stock_y <- fn(df_dataAll_y, 1953:2015, 5, 1)
#***********************************************************************************
# 1. Examine recession regime: number and length in 30-year period ####
#***********************************************************************************
nyear_hist <- 62
# calculate length of regimes in each simulation
get_regimeLength <- function(x, rgm = 1){
#x <- sim_gdp_regimes[,2]
y <- numeric(length(x))
y[1] <- 1
for(i in 2:length(x)){
if(x[i] != x[i-1]) y[i] <- y[i-1] + 1 else y[i] <- y[i-1]
}
df <- data.frame(idx = y, regime = x)
df %<>% filter(regime == rgm) %>%
group_by(idx) %>%
summarise(regime_len = n())
df
r <- df$regime_len
r
}
summary_gdpRegime_0 <- sapply(sim_results$df_sim_gdp_regimes_q %>% filter(year <= nyear_hist) %>% select(-year), get_regimeLength, rgm = 0)
summary_gdpRegime_1 <- sapply(sim_results$df_sim_gdp_regimes_q %>% filter(year <= nyear_hist) %>% select(-year), get_regimeLength, rgm = 1)
# Number of recessions
sapply(summary_gdpRegime_1, length) %>% mean # ~5 recessions in 30 years (many are very short)
# Expected length of regimes
sapply(summary_gdpRegime_1, mean) %>% mean(., na.rm = TRUE) # average length is ~3.1 quarters.
sapply(summary_gdpRegime_0, mean) %>% mean(., na.rm = TRUE) # average length is ~20 quarters.
# all as expected
# distribution of recession length (all sims together)
x <- data.frame(n.rec = unlist(summary_gdpRegime_1))
x %>% count(n.rec)
nrow(x)
unlist(summary_gdpRegime_1) %>% hist()
# about 1/3 "recessions" only last for 1 quarter
# distribution of average recession length across sims
sapply(summary_gdpRegime_1, mean) %>% hist()
# distribution of number of recessions across sims
sapply(summary_gdpRegime_1, length) %>% hist()
#***********************************************************************************
# 2. Examine simulation results for GDP ####
#***********************************************************************************
# Distribution of
#
nyear_hist <- 62
dist_gdp <-
sim_results$df_sim_gdp_y %>% filter(year <= nyear_hist) %>%
group_by(sim) %>%
summarise(Avg_arith = mean(return_y),
SD = sd(return_y),
skew = skewness(return_y),
kurtosis = kurtosis(return_y)
)
qts <- c(0.05, 0.25, 0.5, 0.75, 0.95)
# historical value
v_hist <- c(
mean = df_stock_y$dl_gdp %>% mean(na.rm = T),
sd = df_stock_y$dl_gdp %>% sd(na.rm = T),
skew = df_stock_y$dl_gdp %>% skewness(na.rm = T),
kurto = df_stock_y$dl_gdp %>% kurtosis(na.rm = T)
)
# quantiles of simulated data
q_sim <- rbind(
dist_gdp$Avg_arith %>% quantile(qts),
dist_gdp$SD %>% quantile(qts),
dist_gdp$skew %>% quantile(qts),
dist_gdp$kurtosis %>% quantile(qts)
)
rownames(q_sim) <- c("Avg_arith", "SD", "skew", "kurto")
q_sim
# percentile of historical value
v_hist_pct <- c(
ecdf(dist_gdp$Avg_arith)(v_hist["mean"]),
ecdf(dist_gdp$SD)(v_hist["sd"]),
ecdf(dist_gdp$skew)(v_hist["skew"]),
ecdf(dist_gdp$kurtosis)(v_hist["kurto"])
)
v_hist_pct
df_simSum_gdp_historical <- cbind(v_hist, v_hist_pct, q_sim)
df_simSum_gdp_historical
# Number of recessions
sapply(summary_gdpRegime_1, length) %>% quantile(qts) # ~5 recessions in 30 years (many are very short)
sapply(summary_gdpRegime_0, length) %>% quantile(qts) # ~5 recessions in 30 years (many are very short)
ecdf(sapply(summary_gdpRegime_1, length))(10)
ecdf(sapply(summary_gdpRegime_0, length))(10)
# Expected length of regimes
sapply(summary_gdpRegime_1, mean) %>% quantile(qts, na.rm = TRUE) # average length is ~3.1 quarters.
sapply(summary_gdpRegime_0, mean) %>% quantile(qts, na.rm = TRUE) # average length is ~20 quarters.
ecdf(sapply(summary_gdpRegime_1, mean))(3.7)
ecdf(sapply(summary_gdpRegime_0, mean))(20.2)
#***********************************************************************************
# 3. Examine simulation results for stock returns ####
#***********************************************************************************
# Distribution of
#
nyear_hist <- 62
dist_stock <-
sim_results$df_sim_stockreturn_y %>% filter(year <= nyear_hist) %>%
group_by(sim) %>%
summarise(Avg_arith = mean(return_y),
SD = sd(return_y),
skew = skewness(return_y),
kurtosis = kurtosis(return_y, method = "sample_excess")
)
qts <- c(0.05, 0.25, 0.5, 0.75, 0.95)
q_sim <- rbind(
dist_stock$Avg_arith %>% quantile(qts),
dist_stock$SD %>% quantile(qts),
dist_stock$skew %>% quantile(qts),
dist_stock$kurtosis %>% quantile(qts)
)
q_sim
v_hist <- c(
mean = df_stock_y$return_tot_real_o %>% mean(na.rm = T),
sd = df_stock_y$return_tot_real_o %>% sd(na.rm = T),
skew = df_stock_y$return_tot_real_o %>% skewness(na.rm = T),
kurto= df_stock_y$return_tot_real_o %>% kurtosis(na.rm = T, method = "sample_excess")
)
v_hist
v_hist_pct <- c(
ecdf(dist_stock$Avg_arith)(v_hist["mean"]),
ecdf(dist_stock$SD)(v_hist["sd"]),
ecdf(dist_stock$skew)(v_hist["skew"]),
ecdf(dist_stock$kurtosis)(v_hist["kurto"])
)
v_hist_pct
df_simSum_stock_historical <- cbind(v_hist, v_hist_pct, q_sim)
df_simSum_stock_historical
df_stock_y$return_tot_o %>% kurtosis(na.rm = T, method = 'sample')
df_stock_y$return_tot_real_o %>% kurtosis(na.rm = T, method = 'sample')
#***********************************************************************************
# 4. Examine simulation results of bond returns ####
#***********************************************************************************
# Distribution of
#
nyear_hist <- 62
dist_bond <-
sim_results$df_sim_bondreturn_y %>% filter(year <= nyear_hist) %>%
group_by(sim) %>%
summarise(Avg_arith = mean(return_y),
SD = sd(return_y),
skew = skewness(return_y),
kurtosis = kurtosis(return_y)
)
qts <- c(0.05, 0.25, 0.5, 0.75, 0.95)
q_sim <- rbind(
dist_bond$Avg_arith %>% quantile(qts),
dist_bond$SD %>% quantile(qts),
dist_bond$skew %>% quantile(qts),
dist_bond$kurtosis %>% quantile(qts)
)
v_hist <- c(
mean = df_stock_y$dl_cbond_real %>% mean(na.rm = T),
sd = df_stock_y$dl_cbond_real %>% sd(na.rm = T),
skew = df_stock_y$dl_cbond_real %>% skewness(na.rm = T),
kurto= df_stock_y$dl_cbond_real %>% kurtosis(na.rm = T)
)
df_stock_y$dl_gbond %>% mean(na.rm = T)
df_stock_y$dl_gbond %>% sd(na.rm = T)
df_stock_y$dl_gbond %>% skewness(na.rm = T)
df_stock_y$dl_gbond %>% kurtosis(na.rm = T)
v_hist_pct <- c(
ecdf(dist_bond$Avg_arith)(v_hist["mean"]),
ecdf(dist_bond$SD)(v_hist["sd"]),
ecdf(dist_bond$skew)(v_hist["skew"]),
ecdf(dist_bond$kurtosis)(v_hist["kurto"])
)
df_simSum_bond_historical <- cbind(v_hist, v_hist_pct, q_sim)
df_simSum_bond_historical
write.xlsx2(df_simSum_gdp_historical, paste0(dir_outputs, "Table_simSum_historical.xlsx"), sheetName = "gdp")
write.xlsx2(df_simSum_stock_historical, paste0(dir_outputs, "Table_simSum_historical.xlsx"), sheetName = "stock", append = TRUE)
write.xlsx2(df_simSum_bond_historical, paste0(dir_outputs, "Table_simSum_historical.xlsx"), sheetName = "bond", append = TRUE)
# ggsave(paste0(dir_outputs, "fig_MacroModel_qqplot_simGDP.png"), fig_qqplot_simGDP, width = 10*0.95, height = 5.5*0.95)
dir_outputs
# ## Check annual returns and growth
#
# annual stock returns, all sims
sim_results$df_sim_stockreturn_y$return_y %>% mean # 10.8% mean annual return (quarterly return compounded)
sim_results$df_sim_stockreturn_y$return_y %>% sd # 17.2% std
sim_results$df_sim_stockreturn_y$return_y %>% describe # ~0.57 kurtosis, higher than historical returns
sim_results$df_sim_stockreturn_y$return_y %>% hist()
sim_results$df_sim_stockreturn_y %>%
group_by(sim) %>%
summarise(geoReturn = get_geoReturn(return_y)) %>%
summarise(geoReturn_mean = mean(geoReturn)) # 6.8%
sim_results$df_sim_stockreturn_y$return_y %>% sd # 17.2% std
# annual bond returns, all sims
sim_results$df_sim_bondreturn_y$return_y %>% mean # ~3.5% mean annual return (quarterly return compounded)
sim_results$df_sim_bondreturn_y$return_y %>% sd # ~4.1% std
sim_results$df_sim_bondreturn_y$return_y %>% describe # very small skewness and kurtosis
sim_results$df_sim_bondreturn_y$return_y %>% hist(seq(-0.25, 0.25, 0.01))
sim_results$df_sim_bondreturn_y %>%
group_by(sim) %>%
summarise(geoReturn = get_geoReturn(return_y)) %>%
summarise(geoReturn_mean = mean(geoReturn)) # 3.6%
sim_results$df_sim_bondreturn_y$return_y %>% sd # 4.1% std
# annual gdp returns, all sims
sim_results$df_sim_gdp_y$return_y %>% mean # ~3.05% mean annual return (quarterly return compounded)
sim_results$df_sim_gdp_y$return_y %>% sd # ~2.2% std (larger than std of shocks due to regime-switching)
sim_results$df_sim_gdp_y$return_y %>% describe # heavily skewed, 0.8 kurtosis
sim_results$df_sim_gdp_y$return_y %>% hist
#
sim_results$df_sim_gdp_y %>%
group_by(sim) %>%
summarise(geoReturn = get_geoReturn(return_y)) %>%
summarise(geoReturn_mean = mean(geoReturn)) # 1.9%
sim_results$df_sim_gdp_y$return_y %>% sd # 2.2% std
cor(sim_results$df_sim_stockreturn_y$return_y, sim_results$df_sim_bondreturn_y$return_y)
## Compared with historical distribution
## qqplot for GDP growth
library(qqplotr)
nsim_plot <- 30
nyear_hist <- 62
df_qqplot_sim <-
bind_rows(
df_stock_y %>% select(value = dl_gdp_o) %>% mutate(type = "Historical", var = 'GDP growth' ),
(sim_results$df_sim_gdp_y %>% select(value = return_y) %>% mutate(type = 'Simulated', var = 'GDP growth'))[1:(nsim_plot*nyear_hist),], # plot based on 50 simulations
df_stock_y %>% select(value = return_tot_real_o ) %>% mutate(type = "Historical", var = 'Stock return'),
(sim_results$df_sim_stockreturn_y %>% select(value = return_y) %>% mutate(type = 'Simulated', var = 'Stock return'))[1:(nsim_plot*nyear_hist),], # plot based on 50 simulations
df_stock_y %>% select(value = dl_cbond_real_o) %>% mutate(type = "Historical", var = 'Bond return'),
(sim_results$df_sim_bondreturn_y %>% select(value = return_y) %>% mutate(type = 'Simulated', var = 'Bond return'))[1:(nsim_plot*nyear_hist),] # plot based on 50 simulations
)
df_qqplot_sim %>% head
fig_qqplot_simGDP <- # paperFigure
df_qqplot_sim %>% filter(var == 'GDP growth') %>%
ggplot(aes(sample = value)) + facet_wrap(var~type, scales = 'fixed') + theme_bw() + RIG.themeLite()+
stat_qq_point(size = 1) +
stat_qq_line() +
#stat_qq_band(alpha = 0.5, con = 0.95, bandType = "boot") +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles",
title = 'Comparing Q-Q plots of historical annual GDP growth and simulated annual GDP growth',
caption = "Source of historical data: Federal Reserve Bank of St. Louis, Federal Reserve Economic Data.")
fig_qqplot_simGDP
fig_qqplot_simStock <-
df_qqplot_sim %>% filter(var == 'Stock return') %>%
ggplot(aes(sample = value)) + facet_wrap(var~type, scales = 'fixed') + theme_bw() + RIG.themeLite()+
stat_qq_point(size = 1) +
stat_qq_line() +
#stat_qq_band(alpha = 0.5, con = 0.95, bandType = "boot") +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles",
title = 'Comparing Q-Q plots of historical annual stock return and simulated annual stock return',
caption = "Source of historical data: SBBI Yearbook, 2016.")
fig_qqplot_simStock
fig_qqplot_simBond <-
df_qqplot_sim %>% filter(var == 'Bond return') %>%
ggplot(aes(sample = value)) + facet_wrap(var~type, scales = 'fixed') + theme_bw() + RIG.themeLite()+
stat_qq_point(size = 1) +
stat_qq_line() +
#stat_qq_band(alpha = 0.5, con = 0.95, bandType = "boot") +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles",
title = 'Comparing Q-Q plots of historical annual bond return and simulated annual bond return',
caption = "Source of historical data: SBBI Yearbook, 2016.")
fig_qqplot_simBond
ggsave(paste0(dir_outputs, "fig_MacroModel_qqplot_simGDP_historical.png"), fig_qqplot_simGDP, width = 10*0.95, height = 5.8*0.95)
ggsave(paste0(dir_outputs, "fig_MacroModel_qqplot_simStock_historical.png"), fig_qqplot_simStock, width = 10*0.95, height = 5.8*0.95)
ggsave(paste0(dir_outputs, "fig_MacroModel_qqplot_simBond._historical.png"), fig_qqplot_simBond, width = 10*0.95, height = 5.8*0.95)
df_sim_descriptive <-
df_qqplot_sim %>%
filter(!is.na(value)) %>%
group_by(var, type) %>%
select(-sim) %>%
do(describe(.$value))
df_sim_descriptive
write_csv(df_sim_descriptive, paste0(dir_outputs, 'tab_MacroModel_descriptive_stats_sim_historical.csv'))