forked from rycolab/probing-via-prompting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_pp.py
321 lines (279 loc) · 14.1 KB
/
trainer_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
import collections
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data import DataLoader, Dataset, IterableDataset
from transformers.data.data_collator import DataCollator
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import TrainerCallback
from transformers.training_args import TrainingArguments
from transformers.utils import logging
from transformers.modeling_utils import PreTrainedModel
from transformers.trainer_pt_utils import (
IterableDatasetShard,
find_batch_size,
nested_concat,
nested_detach,
nested_numpify,
nested_truncate,
)
from transformers.trainer_utils import (
EvalLoopOutput,
EvalPrediction,
denumpify_detensorize,
)
from transformers import Trainer
if version.parse(torch.__version__) >= version.parse("1.6"):
from torch.cuda.amp import autocast
logger = logging.get_logger(__name__)
class PPTrainer(Trainer):
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Callable[[], PreTrainedModel] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
):
super().__init__(model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers)
def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
"""
Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Works both with or without labels.
"""
prediction_loss_only = (
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
)
model = self._wrap_model(self.model, training=False)
# if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
# ``train`` is running, halve it first and then put on device
if not self.is_in_train and self.args.fp16_full_eval:
model = model.half().to(self.args.device)
batch_size = dataloader.batch_size
logger.info(f"***** Running {description} *****")
if isinstance(dataloader.dataset, collections.abc.Sized):
logger.info(f" Num examples = {self.num_examples(dataloader)}")
else:
logger.info(" Num examples: Unknown")
logger.info(f" Batch size = {batch_size}")
model.eval()
self.callback_handler.eval_dataloader = dataloader
# Do this before wrapping.
eval_dataset = dataloader.dataset
if self.args.past_index >= 0:
self._past = None
# Initialize containers
# losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
losses_host = None
accuracies_host = None
preds_host = None
labels_host = None
# losses/preds/labels on CPU (final containers)
all_losses = None
all_accuracies = None
all_preds = None
all_labels = None
# Will be useful when we have an iterable dataset so don't know its length.
observed_num_examples = 0
# Main evaluation loop
for step, inputs in enumerate(dataloader):
# Update the observed num examples
observed_batch_size = find_batch_size(inputs)
if observed_batch_size is not None:
observed_num_examples += observed_batch_size
# For batch samplers, batch_size is not known by the dataloader in advance.
if batch_size is None:
batch_size = observed_batch_size
# Prediction step
loss, accuracy, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
# Update containers on host
if loss is not None:
losses = self._nested_gather(loss.repeat(batch_size))
losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
if accuracy is not None:
accuracies = self._nested_gather(accuracy)
accuracies_host = accuracies if accuracies_host is None else torch.cat((accuracies_host, accuracies), dim=0)
if logits is not None:
logits = self._pad_across_processes(logits)
logits = self._nested_gather(logits)
preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
if labels is not None:
labels = self._pad_across_processes(labels)
labels = self._nested_gather(labels)
labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
# Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
if accuracies_host is not None:
accuracies = nested_numpify(accuracies_host)
all_accuracies = accuracies if all_accuracies is None else np.concatenate((all_accuracies, accuracies), axis=0)
if preds_host is not None:
logits = nested_numpify(preds_host)
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if labels_host is not None:
labels = nested_numpify(labels_host)
all_labels = (
labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
)
# Set back to None to begin a new accumulation
losses_host, accuracies_host, preds_host, labels_host = None, None, None, None
if self.args.past_index and hasattr(self, "_past"):
# Clean the state at the end of the evaluation loop
delattr(self, "_past")
# Gather all remaining tensors and put them back on the CPU
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
if accuracies_host is not None:
accuracies = nested_numpify(accuracies_host)
all_accuracies = accuracies if all_accuracies is None else np.concatenate((all_accuracies, accuracies), axis=0)
if preds_host is not None:
logits = nested_numpify(preds_host)
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if labels_host is not None:
labels = nested_numpify(labels_host)
all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
# Number of samples
if not isinstance(eval_dataset, IterableDataset):
num_samples = len(eval_dataset)
# The instance check is weird and does not actually check for the type, but whether the dataset has the right
# methods. Therefore we need to make sure it also has the attribute.
elif isinstance(eval_dataset, IterableDatasetShard) and hasattr(eval_dataset, "num_examples"):
num_samples = eval_dataset.num_examples
else:
num_samples = observed_num_examples
# Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
# samplers has been rounded to a multiple of batch_size, so we truncate.
if all_losses is not None:
all_losses = all_losses[:num_samples]
if all_accuracies is not None:
all_accuracies = all_accuracies[:num_samples]
if all_preds is not None:
all_preds = nested_truncate(all_preds, num_samples)
if all_labels is not None:
all_labels = nested_truncate(all_labels, num_samples)
# Metrics!
if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
else:
metrics = {}
# To be JSON-serializable, we need to remove numpy types or zero-d tensors
metrics = denumpify_detensorize(metrics)
if all_losses is not None:
metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
if all_accuracies is not None:
metrics[f"{metric_key_prefix}_accuracy"] = all_accuracies.mean().item()
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Perform an evaluation step on :obj:`model` using obj:`inputs`.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to evaluate.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
prediction_loss_only (:obj:`bool`):
Whether or not to return the loss only.
ignore_keys (:obj:`Lst[str]`, `optional`):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
Return:
Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
logits and labels (each being optional).
"""
has_labels = all(inputs.get(k) is not None for k in self.label_names)
inputs = self._prepare_inputs(inputs)
if ignore_keys is None:
if hasattr(self.model, "config"):
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
# labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
if has_labels:
labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
if len(labels) == 1:
labels = labels[0]
else:
labels = None
with torch.no_grad():
if has_labels:
if self.use_amp:
with autocast():
loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
else:
loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
loss = loss.mean().detach()
if isinstance(outputs, dict):
accuracy = outputs["accuracy"]
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss", "accuracy"])
else:
accuracy = outputs[1]
logits = outputs[2:]
else:
loss = None
accuracy = None
if self.use_amp:
with autocast():
outputs = model(**inputs)
else:
outputs = model(**inputs)
if isinstance(outputs, dict):
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
else:
logits = outputs
# TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index - 1]
if prediction_loss_only:
return (loss, accuracy, None, None)
logits = nested_detach(logits)
if len(logits) == 1:
logits = logits[0]
return (loss, accuracy, logits, labels)