This repository is the official implementation of an ICML 2024 paper: "Graph Neural PDE Solvers with Conservation and Similarity-Equivariance."
@inproceedings{
horie2024graph,
title={Graph Neural {PDE} Solvers with Conservation and Similarity-Equivariance},
author={Masanobu Horie and Naoto Mitsume},
booktitle={Forty-first International Conference on Machine Learning},
year={2024},
url={https://openreview.net/forum?id=WajJf47TUi}
}
NOTE: This project requires Python3.9 and CUDA 11.1.
$ make install
- Download data from https://savanna.ritc.jp/~horiem/fluxgnn_icml2024/datasets.tar.gz or https://drive.google.com/file/d/1VDRnggVqCd4P5vPXHzDZ0CLx34sAIOAy/view?usp=sharing
- Place
datasets.tar.gz
file indata
directory - Type the following command:
$ cd data && tar xvf datasets.tar.gz
The structure of the data directory is as follows:
data
├── convection_diffusion # Training / evaluation data for the convection--diffusion dataset
│
├── mixture # Training / evaludation data for the mixture dataset
│ ├── raw # - Data for FluxGNN models
│ ├── interim # - Interim data necessary for baseline models
│ ├── preprocessed # - Scaled data necessary for baseline models
│ │
│ ├── taller # - Taller dataset
│ └── transformed # - Rotated and scaled datasets
│
└── pretrained
├── convection_diffusion # Pretrained model for the convection--diffusion dataset
└── mixture # Pretrained models for the mixture dataset
$ make cd_fluxgnn_train # FluxGNN
$ make mixture_fluxgnn_train # FluxGNN
$ make mixture_penn_train # PENN
$ make mixture_mppde_train # MP-PDE
$ make cd_fluxgnn_eval # FluxGNN
$ make cd_fvm_eval # FVM
$ make mixture_fluxgnn_eval # FluxGNN
$ make mixture_penn_eval # PENN
$ make mixture_mppde_eval # MP-PDE
$ make mixture_fvm_eval # FVM