BQ Corpus is a sentence pair matching dataset, which could be seen as a binary classification task.
The official BQ corpus can be find HERE
Download the corpus and save data at [BQ_DATA_PATH]
Download ChineseBERT model and save at [CHINESEBERT_PATH]
.
Run the following scripts to train and evaluate.
python BQ_trainer.py \
--bert_path [CHINESEBERT_PATH] \
--data_dir [BQ_DATA_PATH] \
--save_path [OUTPUT_PATH] \
--max_epoch=10 \
--lr=3e-5 \
--batch_size=4 \
--accumulate_grad_batches 4 \
--warmup_proporation 0.1 \
--weight_decay=0.001 \
--precision 16 \
--gpus=0,1,2,3
The evaluation metric is Accuracy.
Result of our model and previous SOTAs are:
base model:
Model | Dev | Test |
---|---|---|
ERNIE | 86.3 | 85.0 |
BERT | 86.1 | 85.2 |
BERT-wwm | 86.4 | 85.3 |
RoBERTa | 86.0 | 85.0 |
MacBERT | 86.0 | 85.2 |
ChineseBERT | 86.4 | 85.2 |
large model:
Model | Dev | Test |
---|---|---|
RoBERTa | 86.3 | 85.8 |
MacBERT | 86.2 | 85.6 |
ChineseBERT | 86.5 | 86.0 |