-
Notifications
You must be signed in to change notification settings - Fork 0
/
partition_fmnist.py
executable file
·99 lines (74 loc) · 2.83 KB
/
partition_fmnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright 2018-2020 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import dlutils
import random
import pickle
from defaults import get_cfg_defaults
import numpy as np
from os import path
from scipy import misc
import logging
from PIL import Image
import os
def get_fmnist():
dlutils.download.fashion_mnist()
mnist = dlutils.reader.Mnist('fashion-mnist', train=True, test=True).items
images = [x[1] for x in mnist]
labels = [x[0] for x in mnist]
images = np.asarray(images)
assert(images.shape == (70000, 28, 28))
_images = []
for im in images:
im = Image.fromarray(im)
im = np.array(im.resize( (32, 32), Image.BILINEAR))
# im = misc.imresize(im, (32, 32), interp='bilinear')
_images.append(im)
images = np.asarray(_images)
assert(images.shape == (70000, 32, 32))
#save_image(images[:1024], "data_samples.png", pad_value=0.5, nrow=32)
#save_image(images.astype(dtype=np.float32).mean(0), "data_mean.png", pad_value=0.5, nrow=1)
#save_image(images.astype(dtype=np.float32).max(0), "data_max.png", pad_value=0.5, nrow=1)
return [(l, im) for l, im in zip(labels, images)]
def partition(cfg, logger):
# to reproduce the same shuffle
random.seed(0)
mnist = get_fmnist()
random.shuffle(mnist)
folds = cfg.DATASET.FOLDS_COUNT
class_bins = {}
for x in mnist:
if x[0] not in class_bins:
class_bins[x[0]] = []
class_bins[x[0]].append(x)
mnist_folds = [[] for _ in range(folds)]
for _class, data in class_bins.items():
count = len(data)
logger.info("Class %d count: %d" % (_class, count))
count_per_fold = count // folds
for i in range(folds):
mnist_folds[i] += data[i * count_per_fold: (i + 1) * count_per_fold]
os.makedirs(os.path.dirname(cfg.DATASET.PATH), exist_ok=True)
logger.info("Folds sizes:")
for i in range(len(mnist_folds)):
print(len(mnist_folds[i]))
output = open(cfg.DATASET.PATH % i, 'wb')
pickle.dump(mnist_folds[i], output)
output.close()
if __name__ == "__main__":
cfg = get_cfg_defaults()
cfg.merge_from_file('configs/fmnist.yaml')
cfg.freeze()
logger = logging.getLogger("logger")
partition(cfg, logger)