forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clone_model_mb.py
94 lines (78 loc) · 2.74 KB
/
clone_model_mb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Integer programming examples that show how to clone a model."""
# [START import]
import math
from ortools.linear_solver.python import model_builder
# [END import]
def main():
# [START model]
# Create the model.
model = model_builder.Model()
# [END model]
# [START variables]
# x and y are integer non-negative variables.
x = model.new_int_var(0.0, math.inf, "x")
y = model.new_int_var(0.0, math.inf, "y")
# [END variables]
# [START constraints]
# x + 7 * y <= 17.5.
unused_c1 = model.add(x + 7 * y <= 17.5)
# x <= 3.5.
c2 = model.add(x <= 3.5)
# [END constraints]
# [START objective]
# Maximize x + 10 * y.
model.maximize(x + 10 * y)
# [END objective]
# [Start clone]
# Clone the model.
print("Cloning the model.")
model_copy = model.clone()
x_copy = model_copy.var_from_index(x.index)
y_copy = model_copy.var_from_index(y.index)
z_copy = model_copy.new_bool_var("z")
c2_copy = model_copy.linear_constraint_from_index(c2.index)
# Add new constraint.
model_copy.add(x_copy >= 1)
print(f"Number of constraints in original model ={model.num_constraints}")
print(f"Number of constraints in cloned model = {model_copy.num_constraints}")
# Modify a constraint.
c2_copy.add_term(z_copy, 2.0)
# [END clone]
# [START solve]
# Create the solver with the SCIP backend, and solve the model.
solver = model_builder.Solver("scip")
if not solver.solver_is_supported():
return
status = solver.solve(model_copy)
# [END solve]
# [START print_solution]
if status == model_builder.SolveStatus.OPTIMAL:
print("Solution:")
print(f"Objective value = {solver.objective_value}")
print(f"x = {solver.value(x_copy)}")
print(f"y = {solver.value(y_copy)}")
print(f"z = {solver.value(z_copy)}")
else:
print("The problem does not have an optimal solution.")
# [END print_solution]
# [START advanced]
print("\nAdvanced usage:")
print(f"Problem solved in {solver.wall_time} seconds")
# [END advanced]
if __name__ == "__main__":
main()
# [END program]