forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AssignmentTaskSizesMip.java
134 lines (123 loc) · 4.43 KB
/
AssignmentTaskSizesMip.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;
// [END import]
/** MIP example that solves an assignment problem. */
public class AssignmentTaskSizesMip {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Data
// [START data]
double[][] costs = {
{90, 76, 75, 70, 50, 74, 12, 68},
{35, 85, 55, 65, 48, 101, 70, 83},
{125, 95, 90, 105, 59, 120, 36, 73},
{45, 110, 95, 115, 104, 83, 37, 71},
{60, 105, 80, 75, 59, 62, 93, 88},
{45, 65, 110, 95, 47, 31, 81, 34},
{38, 51, 107, 41, 69, 99, 115, 48},
{47, 85, 57, 71, 92, 77, 109, 36},
{39, 63, 97, 49, 118, 56, 92, 61},
{47, 101, 71, 60, 88, 109, 52, 90},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;
final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();
final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
// Maximum total of task sizes for any worker
final int totalSizeMax = 15;
// [END data]
// Solver
// [START solver]
// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
System.out.println("Could not create solver SCIP");
return;
}
// [END solver]
// Variables
// [START variables]
// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int worker : allWorkers) {
for (int task : allTasks) {
x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most max task size.
for (int worker : allWorkers) {
MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, "");
for (int task : allTasks) {
constraint.setCoefficient(x[worker][task], taskSizes[task]);
}
}
// Each task is assigned to exactly one worker.
for (int task : allTasks) {
MPConstraint constraint = solver.makeConstraint(1, 1, "");
for (int worker : allWorkers) {
constraint.setCoefficient(x[worker][task], 1);
}
}
// [END constraints]
// Objective
// [START objective]
MPObjective objective = solver.objective();
for (int worker : allWorkers) {
for (int task : allTasks) {
objective.setCoefficient(x[worker][task], costs[worker][task]);
}
}
objective.setMinimization();
// [END objective]
// Solve
// [START solve]
MPSolver.ResultStatus resultStatus = solver.solve();
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
|| resultStatus == MPSolver.ResultStatus.FEASIBLE) {
System.out.println("Total cost: " + objective.value() + "\n");
for (int worker : allWorkers) {
for (int task : allTasks) {
// Test if x[i][j] is 0 or 1 (with tolerance for floating point
// arithmetic).
if (x[worker][task].solutionValue() > 0.5) {
System.out.println("Worker " + worker + " assigned to task " + task
+ ". Cost: " + costs[worker][task]);
}
}
}
} else {
System.err.println("No solution found.");
}
// [END print_solution]
}
private AssignmentTaskSizesMip() {}
}
// [END program]