forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knapsack_interface.cc
366 lines (312 loc) · 12.9 KB
/
knapsack_interface.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Interface to dedicated knapsack solvers covering multi-dimensional 0-1
// knapsacks.
// Current solvers handle only integer coefficients so a scaling phase is
// performed before solving the problem.
// TODO(user): handle timeouts, compute row and column statuses.
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/memory/memory.h"
#include "ortools/algorithms/knapsack_solver.h"
#include "ortools/linear_solver/linear_solver.h"
#include "ortools/util/fp_utils.h"
namespace operations_research {
class KnapsackInterface : public MPSolverInterface {
public:
explicit KnapsackInterface(MPSolver* solver);
~KnapsackInterface() override;
// ----- Solve -----
MPSolver::ResultStatus Solve(const MPSolverParameters& param) override;
// ----- Model modifications and extraction -----
void Reset() override;
void SetOptimizationDirection(bool maximize) override;
void SetVariableBounds(int index, double lb, double ub) override;
void SetVariableInteger(int index, bool integer) override;
void SetConstraintBounds(int index, double lb, double ub) override;
void AddRowConstraint(MPConstraint* ct) override;
void AddVariable(MPVariable* var) override;
void SetCoefficient(MPConstraint* constraint, const MPVariable* variable,
double new_value, double old_value) override;
void ClearConstraint(MPConstraint* constraint) override;
void SetObjectiveCoefficient(const MPVariable* variable,
double coefficient) override;
void SetObjectiveOffset(double value) override;
void ClearObjective() override;
// ------ Query statistics on the solution and the solve ------
int64_t iterations() const override;
int64_t nodes() const override;
MPSolver::BasisStatus row_status(int constraint_index) const override;
MPSolver::BasisStatus column_status(int variable_index) const override;
// ----- Misc -----
bool IsContinuous() const override;
bool IsLP() const override;
bool IsMIP() const override;
std::string SolverVersion() const override;
void* underlying_solver() override;
void ExtractNewVariables() override;
void ExtractNewConstraints() override;
void ExtractObjective() override;
void SetParameters(const MPSolverParameters& param) override;
void SetRelativeMipGap(double value) override;
void SetPrimalTolerance(double value) override;
void SetDualTolerance(double value) override;
void SetPresolveMode(int value) override;
void SetScalingMode(int value) override;
void SetLpAlgorithm(int value) override;
private:
bool IsKnapsackModel() const;
bool IsVariableFixedToValue(const MPVariable* var, double value) const;
bool IsVariableFixed(const MPVariable* var) const;
double GetVariableValueFromSolution(const MPVariable* var) const;
void NonIncrementalChange() { sync_status_ = MUST_RELOAD; }
std::unique_ptr<KnapsackSolver> knapsack_solver_;
std::vector<int64_t> profits_;
std::vector<std::vector<int64_t>> weights_;
std::vector<int64_t> capacities_;
};
KnapsackInterface::KnapsackInterface(MPSolver* solver)
: MPSolverInterface(solver) {}
KnapsackInterface::~KnapsackInterface() {}
MPSolver::ResultStatus KnapsackInterface::Solve(
const MPSolverParameters& param) {
Reset();
if (!IsKnapsackModel()) {
LOG(ERROR) << "Model is not a knapsack model";
result_status_ = MPSolver::MODEL_INVALID;
return MPSolver::MODEL_INVALID;
}
ExtractModel();
SetParameters(param);
sync_status_ = SOLUTION_SYNCHRONIZED;
// TODO(user): Refine Analysis of the model to choose better solvers.
KnapsackSolver::SolverType solver_type =
KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER;
if (profits_.size() <= 64 && capacities_.size() == 1) {
solver_type = KnapsackSolver::KNAPSACK_64ITEMS_SOLVER;
}
knapsack_solver_ =
std::make_unique<KnapsackSolver>(solver_type, "linear_solver");
const double time_limit_seconds =
solver_->time_limit()
? (static_cast<double>(solver_->time_limit()) / 1000.0)
: std::numeric_limits<double>::infinity();
knapsack_solver_->set_time_limit(time_limit_seconds);
knapsack_solver_->Init(profits_, weights_, capacities_);
knapsack_solver_->Solve();
result_status_ = knapsack_solver_->IsSolutionOptimal() ? MPSolver::OPTIMAL
: MPSolver::FEASIBLE;
objective_value_ = solver_->objective_->offset();
for (int var_id = 0; var_id < solver_->variables_.size(); ++var_id) {
MPVariable* const var = solver_->variables_[var_id];
const double value = GetVariableValueFromSolution(var);
objective_value_ += value * solver_->objective_->GetCoefficient(var);
var->set_solution_value(value);
}
return result_status_;
}
void KnapsackInterface::Reset() {
ResetExtractionInformation();
profits_.clear();
weights_.clear();
capacities_.clear();
knapsack_solver_.reset(nullptr);
}
void KnapsackInterface::SetOptimizationDirection(bool maximize) {
NonIncrementalChange();
}
void KnapsackInterface::SetVariableBounds(int index, double lb, double ub) {
NonIncrementalChange();
}
void KnapsackInterface::SetVariableInteger(int index, bool integer) {
NonIncrementalChange();
}
void KnapsackInterface::SetConstraintBounds(int index, double lb, double ub) {
NonIncrementalChange();
}
void KnapsackInterface::AddRowConstraint(MPConstraint* const ct) {
NonIncrementalChange();
}
void KnapsackInterface::AddVariable(MPVariable* const var) {
NonIncrementalChange();
}
void KnapsackInterface::SetCoefficient(MPConstraint* const constraint,
const MPVariable* const variable,
double new_value, double old_value) {
NonIncrementalChange();
}
void KnapsackInterface::ClearConstraint(MPConstraint* const constraint) {
NonIncrementalChange();
}
void KnapsackInterface::SetObjectiveCoefficient(
const MPVariable* const variable, double coefficient) {
NonIncrementalChange();
}
void KnapsackInterface::SetObjectiveOffset(double value) {
NonIncrementalChange();
}
void KnapsackInterface::ClearObjective() { NonIncrementalChange(); }
int64_t KnapsackInterface::iterations() const { return 0; }
int64_t KnapsackInterface::nodes() const { return kUnknownNumberOfNodes; }
MPSolver::BasisStatus KnapsackInterface::row_status(
int constraint_index) const {
// TODO(user): set properly.
return MPSolver::FREE;
}
MPSolver::BasisStatus KnapsackInterface::column_status(
int variable_index) const {
// TODO(user): set properly.
return MPSolver::FREE;
}
bool KnapsackInterface::IsContinuous() const { return false; }
bool KnapsackInterface::IsLP() const { return false; }
bool KnapsackInterface::IsMIP() const { return true; }
std::string KnapsackInterface::SolverVersion() const {
return "knapsack_solver-0.0";
}
void* KnapsackInterface::underlying_solver() { return knapsack_solver_.get(); }
void KnapsackInterface::ExtractNewVariables() {
DCHECK_EQ(0, last_variable_index_);
for (int column = 0; column < solver_->variables_.size(); ++column) {
set_variable_as_extracted(column, true);
}
}
void KnapsackInterface::ExtractNewConstraints() {
DCHECK_EQ(0, last_constraint_index_);
weights_.resize(solver_->constraints_.size());
capacities_.resize(solver_->constraints_.size(),
std::numeric_limits<int64_t>::max());
for (int row = 0; row < solver_->constraints_.size(); ++row) {
MPConstraint* const ct = solver_->constraints_[row];
double fixed_usage = 0.0;
set_constraint_as_extracted(row, true);
std::vector<double> coefficients(solver_->variables_.size() + 1, 0.0);
for (const auto& entry : ct->coefficients_) {
const int var_index = entry.first->index();
DCHECK(variable_is_extracted(var_index));
if (IsVariableFixedToValue(entry.first, 1.0)) {
fixed_usage += entry.second;
} else if (!IsVariableFixedToValue(entry.first, 0.0)) {
coefficients[var_index] = entry.second;
}
}
// Removing the contribution of variables fixed to 1 from the constraint
// upper bound. All fixed variables have a zero coefficient.
const double capacity = ct->ub() - fixed_usage;
// Adding upper bound to the coefficients to scale.
coefficients[solver_->variables_.size()] = capacity;
double relative_error = 0.0;
double scaling_factor = 0.0;
GetBestScalingOfDoublesToInt64(coefficients,
std::numeric_limits<int64_t>::max(),
&scaling_factor, &relative_error);
const int64_t gcd =
ComputeGcdOfRoundedDoubles(coefficients, scaling_factor);
std::vector<int64_t> scaled_coefficients(solver_->variables_.size(), 0);
for (const auto& entry : ct->coefficients_) {
if (!IsVariableFixed(entry.first)) {
scaled_coefficients[entry.first->index()] =
static_cast<int64_t>(round(scaling_factor * entry.second)) / gcd;
}
}
weights_[row].swap(scaled_coefficients);
capacities_[row] =
static_cast<int64_t>(round(scaling_factor * capacity)) / gcd;
}
}
void KnapsackInterface::ExtractObjective() {
std::vector<double> coefficients(solver_->variables_.size(), 0.0);
for (const auto& entry : solver_->objective_->coefficients_) {
// Whether fixed to 0 or 1, fixed variables are removed from the
// profit function, which for the current implementation means their
// coefficient is set to 0.
if (!IsVariableFixed(entry.first)) {
coefficients[entry.first->index()] = entry.second;
}
}
double relative_error = 0.0;
double scaling_factor = 0.0;
GetBestScalingOfDoublesToInt64(coefficients,
std::numeric_limits<int64_t>::max(),
&scaling_factor, &relative_error);
const int64_t gcd = ComputeGcdOfRoundedDoubles(coefficients, scaling_factor);
std::vector<int64_t> scaled_coefficients(solver_->variables_.size(), 0);
for (const auto& entry : solver_->objective_->coefficients_) {
scaled_coefficients[entry.first->index()] =
static_cast<int64_t>(round(scaling_factor * entry.second)) / gcd;
}
profits_.swap(scaled_coefficients);
}
void KnapsackInterface::SetParameters(const MPSolverParameters& param) {
SetCommonParameters(param);
}
void KnapsackInterface::SetRelativeMipGap(double value) {}
void KnapsackInterface::SetPrimalTolerance(double value) {}
void KnapsackInterface::SetDualTolerance(double value) {}
void KnapsackInterface::SetPresolveMode(int value) {}
void KnapsackInterface::SetScalingMode(int value) {}
void KnapsackInterface::SetLpAlgorithm(int value) {}
bool KnapsackInterface::IsKnapsackModel() const {
// Check variables are boolean.
for (int column = 0; column < solver_->variables_.size(); ++column) {
MPVariable* const var = solver_->variables_[column];
if (var->lb() <= -1.0 || var->ub() >= 2.0 || !var->integer()) {
return false;
}
}
// Check objective coefficients are positive.
for (const auto& entry : solver_->objective_->coefficients_) {
if (entry.second < 0) {
return false;
}
}
// Check constraints are knapsack constraints.
for (int row = 0; row < solver_->constraints_.size(); ++row) {
MPConstraint* const ct = solver_->constraints_[row];
if (ct->lb() > 0.0) {
return false;
}
for (const auto& entry : ct->coefficients_) {
if (entry.second < 0) {
return false;
}
}
}
// Check we are maximizing.
return maximize_;
}
bool KnapsackInterface::IsVariableFixedToValue(const MPVariable* var,
double value) const {
const double lb_round_up = ceil(var->lb());
return value == lb_round_up && floor(var->ub()) == lb_round_up;
}
bool KnapsackInterface::IsVariableFixed(const MPVariable* var) const {
return IsVariableFixedToValue(var, 0.0) || IsVariableFixedToValue(var, 1.0);
}
double KnapsackInterface::GetVariableValueFromSolution(
const MPVariable* var) const {
return !IsVariableFixedToValue(var, 0.0) &&
(knapsack_solver_->BestSolutionContains(var->index()) ||
IsVariableFixedToValue(var, 1.0))
? 1.0
: 0.0;
}
// Register Knapsack solver in the global linear solver factory.
MPSolverInterface* BuildKnapsackInterface(MPSolver* const solver) {
return new KnapsackInterface(solver);
}
} // namespace operations_research