forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bop_parameters.proto
286 lines (243 loc) · 13.5 KB
/
bop_parameters.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
package operations_research.bop;
option java_package = "com.google.ortools.bop";
option java_multiple_files = true;
option csharp_namespace = "Google.OrTools.Bop";
// Method used to optimize a solution in Bop.
//
// NEXT TAG: 16
message BopOptimizerMethod {
enum OptimizerType {
SAT_CORE_BASED = 0;
SAT_LINEAR_SEARCH = 15;
LINEAR_RELAXATION = 1;
LOCAL_SEARCH = 2;
RANDOM_FIRST_SOLUTION = 3;
RANDOM_CONSTRAINT_LNS = 4;
RANDOM_VARIABLE_LNS = 5;
COMPLETE_LNS = 7;
LP_FIRST_SOLUTION = 8;
OBJECTIVE_FIRST_SOLUTION = 9;
USER_GUIDED_FIRST_SOLUTION = 14;
RANDOM_CONSTRAINT_LNS_GUIDED_BY_LP = 11;
RANDOM_VARIABLE_LNS_GUIDED_BY_LP = 12;
RELATION_GRAPH_LNS = 16;
RELATION_GRAPH_LNS_GUIDED_BY_LP = 17;
}
optional OptimizerType type = 1;
}
// Set of optimizer methods to be run by an instance of the portfolio optimizer.
// Note that in the current implementation, all the methods specified in the
// repeated field methods will run on the same solver / thread.
message BopSolverOptimizerSet {
repeated BopOptimizerMethod methods = 1;
}
// Contains the definitions for all the bop algorithm parameters and their
// default values.
//
// NEXT TAG: 42
message BopParameters {
// Maximum time allowed in seconds to solve a problem.
// The counter will starts as soon as Solve() is called.
optional double max_time_in_seconds = 1 [default = inf];
// Maximum time allowed in deterministic time to solve a problem.
// The deterministic time should be correlated with the real time used by the
// solver, the time unit being roughly the order of magnitude of a second.
// The counter will starts as soon as SetParameters() or SolveWithTimeLimit()
// is called.
optional double max_deterministic_time = 27 [default = inf];
// The max deterministic time given to the LP solver each time it is called.
// If this is not enough to solve the LP at hand, it will simply be called
// again later (and the solve will resume from where it stopped).
optional double lp_max_deterministic_time = 37 [default = 1.0];
// Maximum number of consecutive optimizer calls without improving the
// current solution. If this number is reached, the search will be aborted.
// Note that this parameter only applies when an initial solution has been
// found or is provided. Also note that there is no limit to the number of
// calls, when the parameter is not set.
optional int32 max_number_of_consecutive_failing_optimizer_calls = 35;
// Limit used to stop the optimization as soon as the relative gap is smaller
// than the given value.
// The relative gap is defined as:
// abs(solution_cost - best_bound)
// / max(abs(solution_cost), abs(best_bound)).
optional double relative_gap_limit = 28 [default = 1e-4];
// Maximum number of cascading decisions the solver might use to repair the
// current solution in the LS.
optional int32 max_num_decisions_in_ls = 2 [default = 4];
// Abort the LS search tree as soon as strictly more than this number of
// constraints are broken. The default is a large value which basically
// disable this heuristic.
optional int32 max_num_broken_constraints_in_ls = 38 [default = 0x7FFFFFFF];
// Whether the solver should log the search progress to LOG(INFO).
optional bool log_search_progress = 14 [default = false];
// Compute estimated impact at each iteration when true; only once when false.
optional bool compute_estimated_impact = 3 [default = true];
// Avoid exploring both branches (b, a, ...) and (a, b, ...).
optional bool prune_search_tree = 4 [default = false];
// Sort constraints by increasing total number of terms instead of number of
// contributing terms.
optional bool sort_constraints_by_num_terms = 5 [default = false];
// Use the random Large Neighborhood Search instead of the exhaustive one.
optional bool use_random_lns = 6 [default = true];
// The seed used to initialize the random generator.
//
// TODO(user): Some of our client test fail depending on this value! we need
// to fix them and ideally randomize our behavior from on test to the next so
// that this doesn't happen in the future.
optional int32 random_seed = 7 [default = 8];
// Number of variables to relax in the exhaustive Large Neighborhood Search.
optional int32 num_relaxed_vars = 8 [default = 10];
// The number of conflicts the SAT solver has to solve a random LNS
// subproblem.
optional int32 max_number_of_conflicts_in_random_lns = 9 [default = 2500];
// Number of tries in the random lns.
optional int32 num_random_lns_tries = 10 [default = 1];
// Maximum number of backtracks times the number of variables in Local Search,
// ie. max num backtracks == max_number_of_backtracks_in_ls / num variables.
optional int64 max_number_of_backtracks_in_ls = 11 [default = 100000000];
// Use Large Neighborhood Search based on the LP relaxation.
optional bool use_lp_lns = 12 [default = true];
// Whether we use sat propagation to choose the lns neighbourhood.
optional bool use_sat_to_choose_lns_neighbourhood = 15 [default = true];
// The number of conflicts the SAT solver has to solve a random LNS
// subproblem for the quick check of infeasibility.
optional int32 max_number_of_conflicts_for_quick_check = 16 [default = 10];
// If true, find and exploit the eventual symmetries of the problem.
//
// TODO(user): turn this on by default once the symmetry finder becomes fast
// enough to be negligeable for most problem. Or at least support a time
// limit.
optional bool use_symmetry = 17 [default = false];
// If true, find and exploit symmetries in proving satisfiability in the first
// problem.
// This feature is experimental. On some problems, computing symmetries may
// run forever. You may also run into unforseen problems as this feature was
// not extensively tested.
optional bool exploit_symmetry_in_sat_first_solution = 40 [default = false];
// The number of conflicts the SAT solver has to generate a random solution.
optional int32 max_number_of_conflicts_in_random_solution_generation = 20
[default = 500];
// The maximum number of assignments the Local Search iterates on during one
// try. Note that if the Local Search is called again on the same solution
// it will not restart from scratch but will iterate on the next
// max_number_of_explored_assignments_per_try_in_ls assignments.
optional int64 max_number_of_explored_assignments_per_try_in_ls = 21
[default = 10000];
// Whether we use an hash set during the LS to avoid exploring more than once
// the "same" state. Note that because the underlying SAT solver may learn
// information in the middle of the LS, this may make the LS slightly less
// "complete", but it should be faster.
optional bool use_transposition_table_in_ls = 22 [default = true];
// Whether we keep a list of variable that can potentially repair in one flip
// all the current infeasible constraints (such variable must at least appear
// in all the infeasible constraints for this to happen).
optional bool use_potential_one_flip_repairs_in_ls = 39 [default = false];
// Whether we use the learned binary clauses in the Linear Relaxation.
optional bool use_learned_binary_clauses_in_lp = 23 [default = true];
// The number of solvers used to run Bop. Note that one thread will be created
// per solver. The type of communication between solvers is specified by the
// synchronization_type parameter.
optional int32 number_of_solvers = 24 [default = 1];
// Defines how the different solvers are synchronized during the search.
// Note that the synchronization (if any) occurs before each call to an
// optimizer (the smallest granularity of the solver in a parallel context).
enum ThreadSynchronizationType {
// No synchronization. The solvers run independently until the time limit
// is reached; Then learned information from each solver are aggregated.
// The final solution is the best of all found solutions.
// Pros: - No need to wait for another solver to complete its task,
// - Adding a new solver always improves the final solution (In the
// current implementation it still depends on the machine load and
// the time limit).
// Cons: - No learning between solvers.
NO_SYNCHRONIZATION = 0;
// Synchronize all solvers. Each solver waits for all other solvers to
// complete the previous optimizer run, before running again.
// The final solution is the best of all found solutions.
// Pros: - Full learning between solvers.
// Cons: - A lot of waiting time when solvers don't run at the exact same
// speed,
// - The quality of the final solution depends on the number of
// solvers, adding one more solver might lead to poorer results
// because the search goes on a different path.
SYNCHRONIZE_ALL = 1;
// Solver i synchronizes with solvers 0..i-1.
// This is a good tradeoff between NO_SYNCHRONIZATION and SYNCHRONIZE_ALL:
// communication while keeping a relative determinism on the result even
// when the number of solvers increases.
// The final solution is the best of all found solutions.
// Pros: - Solver i learns from i different solvers,
// - Adding a new solver always improves the final solution (In the
// current implementation it still depends on the machine load and
// the time limit).
// Cons: - No full learning,
// - Some solvers need to wait for synchronization.
SYNCHRONIZE_ON_RIGHT = 2;
}
optional ThreadSynchronizationType synchronization_type = 25
[default = NO_SYNCHRONIZATION];
// List of set of optimizers to be run by the solvers.
// Note that the i_th solver will run the
// min(i, solver_optimizer_sets_size())_th optimizer set.
// The default is defined by default_solver_optimizer_sets (only one set).
repeated BopSolverOptimizerSet solver_optimizer_sets = 26;
optional string default_solver_optimizer_sets = 33
[default = "methods:{type:LOCAL_SEARCH } "
"methods:{type:RANDOM_FIRST_SOLUTION } "
"methods:{type:LINEAR_RELAXATION } "
"methods:{type:LP_FIRST_SOLUTION } "
"methods:{type:OBJECTIVE_FIRST_SOLUTION } "
"methods:{type:USER_GUIDED_FIRST_SOLUTION } "
"methods:{type:RANDOM_CONSTRAINT_LNS_GUIDED_BY_LP } "
"methods:{type:RANDOM_VARIABLE_LNS_GUIDED_BY_LP } "
"methods:{type:RELATION_GRAPH_LNS } "
"methods:{type:RELATION_GRAPH_LNS_GUIDED_BY_LP } "
"methods:{type:RANDOM_CONSTRAINT_LNS } "
"methods:{type:RANDOM_VARIABLE_LNS } "
"methods:{type:SAT_CORE_BASED } "
"methods:{type:COMPLETE_LNS } "];
// Use strong branching in the linear relaxation optimizer.
// The strong branching is a what-if analysis on each variable v, i.e.
// compute the best bound when v is assigned to true, compute the best bound
// when v is assigned to false, and then use those best bounds to improve the
// overall best bound.
// This is useful to improve the best_bound, but also to fix some variables
// during search.
// Note that using probing might be time consuming as it runs the LP solver
// 2 * num_variables times.
optional bool use_lp_strong_branching = 29 [default = false];
// Only try to decompose the problem when the number of variables is greater
// than the threshold.
optional int32 decomposer_num_variables_threshold = 30 [default = 50];
// The number of BopSolver created (thread pool workers) used by the integral
// solver to solve a decomposed problem.
// TODO(user): Merge this with the number_of_solvers parameter.
optional int32 num_bop_solvers_used_by_decomposition = 31 [default = 1];
// HACK. To avoid spending too little time on small problems, spend at least
// this time solving each of the decomposed sub-problem. This only make sense
// if num_bop_solvers_used_by_decomposition is greater than 1 so that the
// overhead can be "absorbed" by the other threads.
optional double decomposed_problem_min_time_in_seconds = 36 [default = 0.0];
// The first solutions based on guided SAT will work in chunk of that many
// conflicts at the time. This allows to simulate parallelism between the
// different guiding strategy on a single core.
optional int32 guided_sat_conflicts_chunk = 34 [default = 1000];
// The maximum number of time the LP solver will run to feasibility for pure
// feasibility problems (with a constant-valued objective function). Set this
// to a small value, e.g., 1, if fractional solutions offer useful guidance to
// other solvers in the portfolio. A negative value means no limit.
optional int32 max_lp_solve_for_feasibility_problems = 41 [default = 0];
}