Skip to content

Latest commit

 

History

History
177 lines (151 loc) · 7.12 KB

GETTING_STARTED.md

File metadata and controls

177 lines (151 loc) · 7.12 KB

Getting Started

The dataset configs are located within tools/cfgs/dataset_configs, and the model configs are located within tools/cfgs for different datasets.

KITTI Dataset

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
  • NOTE: if you already have the data infos from pcdet v0.1, you can choose to use the old infos and set the DATABASE_WITH_FAKELIDAR option in tools/cfgs/dataset_configs/kitti_dataset.yaml as True. The second choice is that you can create the infos and gt database again and leave the config unchanged.
OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
|   |   |   ├──modes
|   |   |      ├──64
|   |   |      ├──32
|   |   |      ├──32^
|   |   |      ├──16
|   |   |      ├──16^
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools
  • Generate the data infos and extract point cloud data in modes folder by running the following command:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

NuScenes Dataset

OpenPCDet
├── data
│   ├── nuscenes
│   │   │── v1.0-trainval (or v1.0-mini if you use mini)
│   │   │   │── samples
│   │   │   │── sweeps
│   │   │   │── maps
│   │   │   │── v1.0-trainval  
├── pcdet
├── tools
  • Install the nuscenes-devkit with version 1.0.5 by running the following command:
pip install nuscenes-devkit==1.0.5
  • Generate the data infos by running the following command (it may take several hours):
python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \ 
    --cfg_file tools/cfgs/dataset_configs/nuscenes_dataset.yaml \
    --version v1.0-trainval

Waymo Open Dataset

  • Please download the official Waymo Open Dataset, including the training data training_0000.tar~training_0031.tar and the validation data validation_0000.tar~validation_0007.tar.
  • Unzip all the above xxxx.tar files to the directory of data/waymo/raw_data as follows (You could get 798 train tfrecord and 202 val tfrecord ):
OpenPCDet
├── data
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── modes
│   │   │   │── 64
│   │   │       │── segment-xxxxxxxx/
|   |   |       |── ...
│   │   │   │── 32
│   │   │   │── 16^
│   │   │── pcdet_gt_database_train_sampled_xx/
│   │   │── pcdet_waymo_dbinfos_train_sampled_xx.pkl   
├── pcdet
├── tools
  • Install the official waymo-open-dataset by running the following command:
pip3 install --upgrade pip
# tf 2.0.0
pip3 install waymo-open-dataset-tf-2-0-0==1.2.0 --user
  • Extract point cloud data with different beams from tfrecord and generate data infos by running the following command (it takes several hours, and you could refer to data/waymo/modes/64 to see how many records that have been processed):
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Note that you do not need to install waymo-open-dataset if you have already processed the data before and do not need to evaluate with official Waymo Metrics.

Training & Testing

Test and evaluate the pretrained models

  • Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
  • To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the --eval_all argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
  • To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} \
    --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}

# or

sh scripts/slurm_test_mgpu.sh ${PARTITION} ${NUM_GPUS} \ 
    --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}

Train a model

You could optionally add extra command line parameters --batch_size ${BATCH_SIZE} and --epochs ${EPOCHS} to specify your preferred parameters.

  • Train with multiple GPUs or multiple machines
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}

# or 

sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
  • Train with a single GPU:
python train.py --cfg_file ${CONFIG_FILE}

LiDAR Distillation

Take PointPillars on Waymo -> nuScenes as an example:

  1. Train 64-beam teacher model
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file cfgs/da-waymo-nus_models/pointpillar/pointpillar.yaml \
    --batch_size ${BATCH_SIZE} --extra_tag 64  --exp_name ${EXP_NAME} 
  1. Train 32-beam model whose teacher is 64-beam model
sh scripts/dist_train_mimic.sh ${NUM_GPUS} --cfg_file cfgs/da-waymo-nus_models/pointpillar/pointpillar.yaml \
    --batch_size ${BATCH_SIZE} --extra_tag 32 --teacher_tag 64 --pretrained_model ${64-BEAM MODEL} \
    --pretrained_teacher_model ${64-BEAM MODEL} --mimic_weight 1 --mimic_mode roi --exp_name ${EXP_NAME} 
  1. Train 16*-beam model whose teacher is 32-beam model
sh scripts/dist_train_mimic.sh ${NUM_GPUS} --cfg_file cfgs/da-waymo-nus_models/pointpillar/pointpillar.yaml \
    --batch_size ${BATCH_SIZE} --extra_tag 16^ --teacher_tag 32 --pretrained_model ${32-BEAM MODEL} \
    --pretrained_teacher_model ${32-BEAM MODEL} --mimic_weight 1 --mimic_mode roi --exp_name ${EXP_NAME} 

Notice that you need to select the best model as the teacher model for the next stage.

Although our method is designed for beam-induced domain gap, we can easily combine our method with other general 3D UDA methods (e.g. ST3D) to solve general domain gaps.

sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file cfgs/da-waymo-nus_models/pointpillar_st3d/pointpillar_st3d.yaml \
    --batch_size ${BATCH_SIZE} --extra_tag 16^ --pretrained_model ${16*-BEAM MODEL} --exp_name ${EXP_NAME} 

For evaluation, you also need to add --extra_tag:

sh scripts/dist_test.sh ${NUM_GPUS} --extra_tag 16^ \
    --cfg_file cfgs/da-waymo-nus_models/pointpillar_st3d/pointpillar_st3d.yaml --batch_size ${BATCH_SIZE} --ckpt ${CKPT}