-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf1.py
40 lines (23 loc) · 1023 Bytes
/
tf1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
import datetime
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
log_dir = "logs_data/fit/" + datetime.datetime.now().strftime("%m-%d--%H%M%S")
tensorboard_callback = tf.compat.v1.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, write_grads=True)
model.fit(x=x_train,
y=y_train,
epochs=20,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback])