-
Notifications
You must be signed in to change notification settings - Fork 0
/
code_root_ctrl_MCTestScen_v2_CSPF.py
189 lines (160 loc) · 7.82 KB
/
code_root_ctrl_MCTestScen_v2_CSPF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/python
import logging
import unittest
from code_root_ctrl_MCTestScen_v2 import RootCtrlTest
class RootCtrlTestCSPF(RootCtrlTest):
""" Multi-Controller Test Scenario V2 test that uses the CSPFRecomp
TE-Optimisation method with a candidate (path) revsort attribute of
True (heavy hitters considered first)
Test Scenarios:
Docs/MCTestScenarios/scen-v2-CSPFRecomp-CandidateRevsort.png
"""
# Consider heavy hitters first for CSPF tests
revsort = True
def __init__(self, *args, **kwargs):
super(RootCtrlTestCSPF, self).__init__(*args, **kwargs)
def test_case_01(self, show_print=True):
""" Scenario 1: h1 -> h8 110M, h2 -> h8 120M
Outcome:
C2 should swap h2-h8 to s7-s9
"""
if show_print:
print("\nTesting scenario 1 (h1->h8 110M | h2-h8 120M) CSPF")
# Configure the initial state of the experiment
self.test_case_00(show_print=False)
c2_egg_change = {"cid": "c2", "hkey": ("h2", "h8"), "new_paths": [
{"action": "add", "in": ("s04", 3), "out": ("s07", 3)},
{"action": "add", "in": ("s06", 4), "out": ("s05", 4)}]
}
c3_ing_change = {"cid": "c3", "hkey": ("h2", "h8"), "new_paths": [
{"action": "add", "in": ("s09", 2), "out": -1, "out_eth": "a::"},
{"action": "add", "in": ("s08", 3), "out": -1, "out_eth": "a::"}]
}
exp_paths = {("h2", "h8"): {}}
exp_inst = {"c2": {}}
# Perform egress change C2 and check results are correct
self.ctrl._path_info_changed(c2_egg_change)
exp_paths[("h2", "h8")]["prim"] = ["h2", "c1", "s02", "s04", "c2", "s07", "s08", "c3", "h8"]
exp_paths[("h2", "h8")]["sec"] = ["h2", "c1", "s02", "s06", "c2", "s05", "s09", "c3", "h8"]
exp_inst["c2"][("h2", "h8")] = c2_egg_change["new_paths"]
self._check_computed_paths(exp_paths, exp_inst)
# Perform the ingress change at c3 and check results
self.ctrl._path_info_changed(c3_ing_change)
exp_paths[("h2", "h8")]["prim"] = ["h2", "c1", "s02", "s04", "c2", "s07", "s09", "c3", "h8"]
exp_paths[("h2", "h8")]["sec"] = ["h2", "c1", "s02", "s06", "c2", "s05", "s08", "c3", "h8"]
exp_inst["c3"] = {}
exp_inst["c3"][("h2", "h8")] = c3_ing_change["new_paths"]
self._check_computed_paths(exp_paths, exp_inst)
def test_case_02(self, show_print=True):
""" Scenario 2: h1 -> h8 110M, h2 -> h8 400M
Outcome:
h2-h8 moved to c4 at c1
"""
if show_print:
print("\nTesting scenario 2 (h1->h8 110M | h2-h8 400M) CSPF")
# Configure the initial state of the experiment
self.test_case_01(show_print=False)
# Prime the topology with TE information (including congestion)
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c1", "sw": "s02", "port": 4, "traff_bps": 510000000})
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c2", "sw": "s05", "port": 4, "traff_bps": 110000000})
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c2", "sw": "s07", "port": 3, "traff_bps": 200000000})
self.ctrl._action_inter_domain_link_congested(
{"cid": "c2", "sw": "s07", "port": 3, "traff_bps": 400000000,
"te_thresh": 0.90, "paths": [(("h2", "h8"), 400000000)]}
)
exp_paths = {
("h2", "h8"): {
"prim": ["h2", "c1", "s02", "s10", "c4", "s12", "s14", "c5", "s15", "s09", "c3", "h8"],
"sec": ["h2", "c1", "s02", "s04", "c2", "s07", "s09", "c3", "h8"]}
}
exp_inst = {
"c1": {
("h2", "h8"): [
{"action": "add", "in": -1, "out": ("s02", 6), "out_addr": "0."},
{"action": "add", "in": -1, "out": ("s02", 4), "out_addr": "0."}],
}, "c2": {
("h2", "h8"): [
{"action": "add", "in": ("s04", 3), "out": ("s07", 3)}],
}, "c3": {
("h2", "h8"): [
{"action": "add", "in": ("s09", 3), "out": -1, "out_eth": "a::"},
{"action": "add", "in": ("s09", 2), "out": -1, "out_eth": "a::"}],
}, "c4": {
("h2", "h8"): [
{"action": "add", "in": ("s10", 3), "out": ("s12", 3)}],
}, "c5": {
("h2", "h8"): [
{"action": "add", "in": ("s14", 3), "out": ("s15", 3)}],
}
}
self._check_computed_paths(exp_paths, exp_inst)
def test_case_03(self, show_print=True):
""" Scenario 3: h1 -> h8 400M, h2 -> h8 400M
Outcome:
h1-h8 moved to c4 at c1
"""
if show_print:
print("\nTesting scenario 3 (h1->h8 400M | h2-h8 400M) CSPF")
# Configure the initial state of the experiment
self.test_case_02(show_print=False)
# Initiate experiment
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c1", "sw": "s02", "port": 4, "traff_bps": 400000000})
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c1", "sw": "s02", "port": 6, "traff_bps": 400000000})
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c2", "sw": "s05", "port": 4, "traff_bps": 200000000})
self.ctrl._action_inter_domain_link_traffic(
{"cid": "c2", "sw": "s07", "port": 3, "traff_bps": 0})
self.ctrl._action_inter_domain_link_congested(
{"cid": "c2", "sw": "s05", "port": 4, "traff_bps": 400000000,
"te_thresh": 0.90, "paths": [(("h1", "h8"), 400000000)]}
)
exp_paths = {
("h1", "h8"): {
"prim": ["h1", "c1", "s02", "s10", "c4", "s12", "s14", "c5", "s15", "s09", "c3", "h8"],
"sec": ["h1", "c1", "s02", "s04", "c2", "s05", "s08", "c3", "h8"]},
("h2", "h8"): {
"prim": ["h2", "c1", "s02", "s10", "c4", "s12", "s14", "c5", "s15", "s09", "c3", "h8"],
"sec": ["h2", "c1", "s02", "s04", "c2", "s07", "s09", "c3", "h8"]}
}
exp_inst = {
"c1": {
("h1", "h8"): [
{"action": "add", "in": -1, "out": ("s02", 6), "out_addr": "0."},
{"action": "add", "in": -1, "out": ("s02", 4), "out_addr": "0."}],
("h2", "h8"): [
{"action": "add", "in": -1, "out": ("s02", 6), "out_addr": "0."},
{"action": "add", "in": -1, "out": ("s02", 4), "out_addr": "0."}]
}, "c2": {
("h1", "h8"): [
{"action": "add", "in": ("s04", 3), "out": ("s05", 4)}],
("h2", "h8"): [
{"action": "add", "in": ("s04", 3), "out": ("s07", 3)}]
}, "c3": {
("h1", "h8"): [
{"action": "add", "in": ("s09", 3), "out": -1, "out_eth": "a::"},
{"action": "add", "in": ("s08", 3), "out": -1, "out_eth": "a::"}],
("h2", "h8"): [
{"action": "add", "in": ("s09", 3), "out": -1, "out_eth": "a::"},
{"action": "add", "in": ("s09", 2), "out": -1, "out_eth": "a::"}]
}, "c4": {
("h1", "h8"): [
{"action": "add", "in": ("s10", 3), "out": ("s12", 3)}],
("h2", "h8"): [
{"action": "add", "in": ("s10", 3), "out": ("s12", 3)}]
}, "c5": {
("h1", "h8"): [
{"action": "add", "in": ("s14", 3), "out": ("s15", 3)}],
("h2", "h8"): [
{"action": "add", "in": ("s14", 3), "out": ("s15", 3)}]
}
}
self._check_computed_paths(exp_paths, exp_inst)
if __name__ == "__main__":
dummy = DummyRootCtrl()
dummy.start()
dummy.stop()