-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils_awp.py
62 lines (46 loc) · 1.89 KB
/
utils_awp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
EPS = 1E-20
def diff_in_weights(model, proxy):
diff_dict = OrderedDict()
model_state_dict = model.state_dict()
proxy_state_dict = proxy.state_dict()
for (old_k, old_w), (new_k, new_w) in zip(model_state_dict.items(), proxy_state_dict.items()):
if len(old_w.size()) <= 1:
continue
if 'weight' in old_k:
diff_w = new_w - old_w
diff_dict[old_k] = old_w.norm() / (diff_w.norm() + EPS) * diff_w
return diff_dict
def add_into_weights(model, diff, coeff=1.0):
names_in_diff = diff.keys()
with torch.no_grad():
for name, param in model.named_parameters():
if name in names_in_diff:
param.add_(coeff * diff[name])
class TradesAWP(object):
def __init__(self, model, proxy, proxy_optim, gamma):
super(TradesAWP, self).__init__()
self.model = model
self.proxy = proxy
self.proxy_optim = proxy_optim
self.gamma = gamma
def calc_awp(self, inputs_adv, inputs_clean, targets, beta):
self.proxy.load_state_dict(self.model.state_dict())
self.proxy.train()
loss_natural = F.cross_entropy(self.proxy(inputs_clean), targets)
loss_robust = F.kl_div(F.log_softmax(self.proxy(inputs_adv), dim=1),
F.softmax(self.proxy(inputs_clean), dim=1),
reduction='batchmean')
loss = - 1.0 * (loss_natural + beta * loss_robust)
self.proxy_optim.zero_grad()
loss.backward()
self.proxy_optim.step()
diff = diff_in_weights(self.model, self.proxy)
return diff
def perturb(self, diff):
add_into_weights(self.model, diff, coeff=1.0 * self.gamma)
def restore(self, diff):
add_into_weights(self.model, diff, coeff=-1.0 * self.gamma)