-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_Model.py
186 lines (128 loc) · 5.17 KB
/
Train_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#Load libraries
import os
import numpy as np
import torch
import glob
import torch.nn as nn
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.autograd import Variable
import torchvision
import pathlib
#checking for device
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
#Transforms
transformer=transforms.Compose([
transforms.Resize((150,150)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), #0-255 to 0-1, numpy to tensors
transforms.Normalize([0.5,0.5,0.5], # 0-1 to [-1,1] , formula (x-mean)/std #X is the old pixel value
[0.5,0.5,0.5])
])
#Path for training and testing directory
train_path='Satellite-Image-Classification\seg_train\seg_train'
test_path='Satellite-Image-Classification\seg_test\seg_test'
#Dataloader
train_loader=DataLoader(
torchvision.datasets.ImageFolder(train_path,transform=transformer),
batch_size=64, shuffle=True
)
test_loader=DataLoader(
torchvision.datasets.ImageFolder(test_path,transform=transformer),
batch_size=32, shuffle=True
)
#categories
root=pathlib.Path(train_path)
classes=sorted([j.name.split('/')[-1] for j in root.iterdir()])
print('classes is -', classes)
#CNN Network
class ConvNet(nn.Module):
def __init__(self,num_classes=4):
super(ConvNet,self).__init__()
#Output size after convolution filter
#((w-f+2P)/s) +1
#Input shape= (256,3,150,150)
self.conv1=nn.Conv2d(in_channels=3,out_channels=12,kernel_size=3,stride=1,padding=1)
#Shape= (256,12,150,150)
self.bn1=nn.BatchNorm2d(num_features=12)
#Shape= (256,12,150,150)
self.relu1=nn.ReLU()
#Shape= (256,12,150,150)
self.pool=nn.MaxPool2d(kernel_size=2)
#Reduce the image size be factor 2
#Shape= (256,12,75,75)
self.conv2=nn.Conv2d(in_channels=12,out_channels=20,kernel_size=3,stride=1,padding=1)
#Shape= (256,20,75,75)
self.relu2=nn.ReLU()
#Shape= (256,20,75,75)
self.conv3=nn.Conv2d(in_channels=20,out_channels=32,kernel_size=3,stride=1,padding=1)
#Shape= (256,32,75,75)
self.bn3=nn.BatchNorm2d(num_features=32)
#Shape= (256,32,75,75)
self.relu3=nn.ReLU()
#Shape= (256,32,75,75)
self.fc=nn.Linear(in_features=75 * 75 * 32,out_features=num_classes)
#Feed forwad function
def forward(self,input):
output=self.conv1(input)
output=self.bn1(output)
output=self.relu1(output)
output=self.pool(output)
output=self.conv2(output)
output=self.relu2(output)
output=self.conv3(output)
output=self.bn3(output)
output=self.relu3(output)
#Above output will be in matrix form, with shape (256,32,75,75)
output=output.view(-1,32*75*75)
output=self.fc(output)
return output
model=ConvNet(num_classes=4).to(device)
print('model is :-', model)
#Optmizer and loss function
optimizer=Adam(model.parameters(),lr=0.001,weight_decay=0.0001)
loss_function=nn.CrossEntropyLoss()
num_epochs=20
#calculating the size of training and testing images
train_count=len(glob.glob(train_path+'/**/*.jpg'))
test_count=len(glob.glob(test_path+'/**/*.jpg'))
print(f'total number of train_image {train_count} & Total number of test_image{test_count}')
#Model training and saving best model
best_accuracy=0.0
for epoch in range(num_epochs):
#Evaluation and training on training dataset
model.train()
train_accuracy=0.0
train_loss=0.0
for i, (images,labels) in enumerate(train_loader):
if torch.cuda.is_available():
images=Variable(images.cuda())
labels=Variable(labels.cuda())
optimizer.zero_grad()
outputs=model(images)
loss=loss_function(outputs,labels)
loss.backward()
optimizer.step()
train_loss+= loss.cpu().data*images.size(0)
_,prediction=torch.max(outputs.data,1)
train_accuracy+=int(torch.sum(prediction==labels.data))
train_accuracy=train_accuracy/train_count
train_loss=train_loss/train_count
# Evaluation on testing dataset
model.eval()
test_accuracy=0.0
for i, (images,labels) in enumerate(test_loader):
if torch.cuda.is_available():
images=Variable(images.cuda())
labels=Variable(labels.cuda())
outputs=model(images)
_,prediction=torch.max(outputs.data,1)
test_accuracy+=int(torch.sum(prediction==labels.data))
test_accuracy=test_accuracy/test_count
print('Epoch: '+str(epoch)+' Train Loss: '+str(train_loss)+' Train Accuracy: '+str(train_accuracy)+' Test Accuracy: '+str(test_accuracy))
#Save the best model
if test_accuracy>best_accuracy:
torch.save(model.state_dict(),'best_checkpoint.model')
best_accuracy=test_accuracy