-
Notifications
You must be signed in to change notification settings - Fork 0
/
heaps.ml
223 lines (187 loc) · 6.57 KB
/
heaps.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
(**************************************************************************)
(* *)
(* Copyright (C) Jean-Christophe Filliatre *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(*s Heaps *)
module type Ordered = sig
type t
val compare : t -> t -> int
end
exception EmptyHeap
(*s Imperative implementation *)
module Imperative(X : Ordered) = struct
(* The heap is encoded in the array [data], where elements are stored
from [0] to [size - 1]. From an element stored at [i], the left
(resp. right) subtree, if any, is rooted at [2*i+1] (resp. [2*i+2]). *)
type t = { mutable size : int; mutable data : X.t array }
(* When [create n] is called, we cannot allocate the array, since there is
no known value of type [X.t]; we'll wait for the first addition to
do it, and we remember this situation with a negative size. *)
let create n =
if n <= 0 then invalid_arg "create";
{ size = -n; data = [||] }
let is_empty h = h.size <= 0
(* [resize] doubles the size of [data] *)
let resize h =
let n = h.size in
assert (n > 0);
let n' = 2 * n in
let d = h.data in
let d' = Array.create n' d.(0) in
Array.blit d 0 d' 0 n;
h.data <- d'
let add h x =
(* first addition: we allocate the array *)
if h.size < 0 then begin
h.data <- Array.create (- h.size) x; h.size <- 0
end;
let n = h.size in
(* resizing if needed *)
if n == Array.length h.data then resize h;
let d = h.data in
(* moving [x] up in the heap *)
let rec moveup i =
let fi = (i - 1) / 2 in
if i > 0 && X.compare d.(fi) x < 0 then begin
d.(i) <- d.(fi);
moveup fi
end else
d.(i) <- x
in
moveup n;
h.size <- n + 1
let maximum h =
if h.size <= 0 then raise EmptyHeap;
h.data.(0)
let remove h =
if h.size <= 0 then raise EmptyHeap;
let n = h.size - 1 in
h.size <- n;
let d = h.data in
let x = d.(n) in
(* moving [x] down in the heap *)
let rec movedown i =
let j = 2 * i + 1 in
if j < n then
let j =
let j' = j + 1 in
if j' < n && X.compare d.(j') d.(j) > 0 then j' else j
in
if X.compare d.(j) x > 0 then begin
d.(i) <- d.(j);
movedown j
end else
d.(i) <- x
else
d.(i) <- x
in
movedown 0
let pop_maximum h = let m = maximum h in remove h; m
let iter f h =
let d = h.data in
for i = 0 to h.size - 1 do f d.(i) done
let fold f h x0 =
let n = h.size in
let d = h.data in
let rec foldrec x i =
if i >= n then x else foldrec (f d.(i) x) (succ i)
in
foldrec x0 0
end
(*s Functional implementation *)
module type FunctionalSig = sig
type elt
type t
val empty : t
val add : elt -> t -> t
val maximum : t -> elt
val remove : t -> t
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
end
module Functional(X : Ordered) = struct
(* Heaps are encoded as complete binary trees, i.e., binary trees
which are full expect, may be, on the bottom level.
These trees also enjoy the heap property, namely the value of any node
is greater or equal than those of its left and right subtrees.
The representation invariant is the following: the number of nodes in
the left subtree is equal to the number of nodes in the right
subtree, or exceeds it by exactly once. In the first case, we use
the constructor [Same] and in the second the constructor [Diff].
Then it can be proved that [2^(h-1) <= n <= 2^h] when [n] is the
number of elements and [h] the height of the tree. *)
type elt = X.t
type t =
| Empty
| Same of t * X.t * t (* same number of elements on both sides *)
| Diff of t * X.t * t (* left has [n+1] nodes and right has [n] *)
let empty = Empty
let rec add x = function
| Empty ->
Same (Empty, x, Empty)
(* insertion to the left *)
| Same (l, y, r) ->
if X.compare x y > 0 then Diff (add y l, x, r) else Diff (add x l, y,r)
(* insertion to the right *)
| Diff (l, y, r) ->
if X.compare x y > 0 then Same (l, x, add y r) else Same (l,y, add x r)
let maximum = function
| Empty -> raise EmptyHeap
| Same (_, x, _) | Diff (_, x, _) -> x
(* extracts one element on the bottom level of the tree, while
maintaining the representation invariant *)
let rec extract_last = function
| Empty -> raise EmptyHeap
| Same (Empty, x, Empty) -> x, Empty
| Same (l, x, r) -> let y,r' = extract_last r in y, Diff (l, x, r')
| Diff (l, x, r) -> let y,l' = extract_last l in y, Same (l', x, r)
(* removes the topmost element of the tree and inserts a new element [x] *)
let rec descent x = function
| Empty ->
assert false
| Same (Empty, _, Empty) ->
Same (Empty, x, Empty)
| Diff (Same (_, z, _) as l, _, Empty) ->
if X.compare x z > 0 then Diff (l, x, Empty)
else Diff (Same (Empty, x, Empty), z, Empty)
| Same (l, _, r) ->
let ml = maximum l in
let mr = maximum r in
if X.compare x ml > 0 && X.compare x mr > 0 then
Same (l, x, r)
else
if X.compare ml mr > 0 then
Same (descent x l, ml, r)
else
Same (l, mr, descent x r)
| Diff (l, _, r) ->
let ml = maximum l in
let mr = maximum r in
if X.compare x ml > 0 && X.compare x mr > 0 then
Diff (l, x, r)
else
if X.compare ml mr > 0 then
Diff (descent x l, ml, r)
else
Diff (l, mr, descent x r)
let remove = function
| Empty -> raise EmptyHeap
| Same (Empty, x, Empty) -> Empty
| h -> let y,h' = extract_last h in descent y h'
let rec iter f = function
| Empty -> ()
| Same (l, x, r) | Diff (l, x, r) -> iter f l; f x; iter f r
let rec fold f h x0 = match h with
| Empty -> x0
| Same (l, x, r) | Diff (l, x, r) -> fold f l (fold f r (f x x0))
end