-
Notifications
You must be signed in to change notification settings - Fork 93
/
eval_colmap.py
318 lines (264 loc) · 11.5 KB
/
eval_colmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright 2020 Google LLC, University of Victoria, Czech Technical University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import os
import subprocess
from shutil import copyfile, rmtree
import numpy as np
from joblib import Parallel, delayed
from tqdm import tqdm
from config import get_config, print_usage
from utils.colmap_helper import (compute_stereo_metrics_from_colmap,
get_best_colmap_index,
get_colmap_image_path_list,
is_colmap_img_valid,
get_colmap_image_subset_index)
from utils.io_helper import load_h5, save_h5
from utils.load_helper import load_calib
from utils.match_helper import compute_image_pairs
from utils.path_helper import (get_colmap_output_path, get_colmap_pose_file,
get_colmap_temp_path, get_item_name_list,
get_kp_file, get_match_file, get_fullpath_list,
get_data_path, get_filter_match_file)
def compute_pose_error(cfg):
'''
Computes the error using quaternions and translation vector for COLMAP
'''
if os.path.exists(get_colmap_pose_file(cfg)):
print(' -- already exists, skipping COLMAP eval')
return
# Load visiblity and images
image_path_list = get_colmap_image_path_list(cfg)
subset_index = get_colmap_image_subset_index(cfg, image_path_list)
image_name_list = get_item_name_list(image_path_list)
# Load camera information
data_dir = get_data_path(cfg)
calib_list = get_fullpath_list(data_dir, 'calibration')
calib_dict = load_calib(calib_list, subset_index)
# Generate all possible pairs from all images
pair_list = []
for ii in range(len(image_path_list)):
for jj in range(ii + 1, len(image_path_list)):
pair_list.append([ii, jj])
# Check if colmap results exist. Otherwise, this whole bag is a fail.
colmap_output_path = get_colmap_output_path(cfg)
is_colmap_valid = os.path.exists(os.path.join(colmap_output_path, '0'))
if is_colmap_valid:
# Find the best colmap reconstruction
best_index = get_best_colmap_index(cfg)
print('Computing pose errors')
#num_cores = int(multiprocessing.cpu_count() * 0.9)
num_cores = int(len(os.sched_getaffinity(0)) * 0.9)
result = Parallel(n_jobs=num_cores)(
delayed(compute_stereo_metrics_from_colmap)(image_path_list[
pair[0]], image_path_list[pair[1]], calib_dict[image_name_list[
pair[0]]], calib_dict[image_name_list[pair[1]]],
best_index, cfg)
for pair in tqdm(pair_list))
# Collect err_q, err_t from results
err_dict = {}
for _i in range(len(pair_list)):
pair = pair_list[_i]
if is_colmap_valid:
err_q = result[_i][0]
err_t = result[_i][1]
else:
err_q = np.inf
err_t = np.inf
err_dict[image_name_list[pair[0]] + '-' +
image_name_list[pair[1]]] = [err_q, err_t]
# Finally, save packed errors
save_h5(err_dict, get_colmap_pose_file(cfg))
def run_colmap_for_bag(cfg):
'''Runs colmap to retrieve poses for each bag'''
# Colmap pose file already exists, skip the session
if os.path.exists(get_colmap_pose_file(cfg)):
print(' -- already exists, skipping COLMAP eval')
return
# Load keypoints and matches
keypoints_dict = load_h5(get_kp_file(cfg))
matches_dict = load_h5(get_filter_match_file(cfg))
print('Running COLMAP on "{}", bagsize {} -- bag {}'.format(
cfg.scene, cfg.bag_size, cfg.bag_id))
# Additional sanity check to account for crash -- in this case colmap temp
# directory can exist. This in an indication that you need to remove
# results and rerun colmap.
colmap_temp_path = get_colmap_temp_path(cfg)
colmap_output_path = get_colmap_output_path(cfg)
if os.path.exists(colmap_temp_path):
print(' -- temp path exists - cleaning up from crash')
rmtree(colmap_temp_path)
if os.path.exists(colmap_output_path):
rmtree(colmap_output_path)
if os.path.exists(get_colmap_pose_file(cfg)):
os.remove(get_colmap_pose_file(cfg))
# Check existance of colmap result and terminate if already exists.
colmap_output_path = get_colmap_output_path(cfg)
if os.path.exists(colmap_output_path):
print(' -- already exists, skipping COLMAP session')
return
# Create output directory
os.makedirs(colmap_output_path)
# Create colmap temporary directory and copy files over. Remove anything
# that might have existed.
colmap_temp_path = get_colmap_temp_path(cfg)
if os.path.exists(colmap_temp_path):
rmtree(colmap_temp_path)
# Make sure old data is gone and create a new temp folder
assert (not os.path.exists(colmap_temp_path))
os.makedirs(colmap_temp_path)
# Create colmap-friendy structures
os.makedirs(os.path.join(colmap_temp_path, 'images'))
os.makedirs(os.path.join(colmap_temp_path, 'features'))
# Get list of all images in this bag
image_subset_list = get_colmap_image_path_list(cfg)
subset_index = get_colmap_image_subset_index(cfg, image_subset_list)
# Copy images
for _src in image_subset_list:
_dst = os.path.join(colmap_temp_path, 'images', os.path.basename(_src))
copyfile(_src, _dst)
# Write features to colmap friendly format
for image_path in image_subset_list:
# Retrieve image name, with and without extension
image_name = os.path.basename(image_path)
image_name_no_ext = os.path.splitext(image_name)[0]
# Read keypoint
keypoints = keypoints_dict[image_name_no_ext]
# Keypoint file to write to
kp_file = os.path.join(colmap_temp_path, 'features',
image_name + '.txt')
# Open a file to write
with open(kp_file, 'w') as f:
# Retieve the number of keypoints
len_keypoints = len(keypoints)
f.write(str(len_keypoints) + ' ' + str(128) + '\n')
for i in range(len_keypoints):
kp = ' '.join(str(k) for k in keypoints[i][:4])
desc = ' '.join(str(0) for d in range(128))
f.write(kp + ' ' + desc + '\n')
# Write matches to colmap friendly format
# Read visibilties
data_dir = get_data_path(cfg)
vis_list = get_fullpath_list(data_dir, 'visibility')
# Load matches and store them to a text file
# TODO: This seems to be done multiple times. Do we need to do this?
print('Generate list of all possible pairs')
pairs = compute_image_pairs(vis_list, len(image_subset_list), cfg.vis_th,
subset_index)
print('{} pairs generated'.format(len(pairs)))
# Write to match file
match_file = os.path.join(colmap_temp_path, 'matches.txt')
with open(match_file, 'w') as f:
for pair in pairs:
image_1_name = os.path.basename(image_subset_list[pair[0]])
image_2_name = os.path.basename(image_subset_list[pair[1]])
image_1_name_no_ext = os.path.splitext(image_1_name)[0]
image_2_name_no_ext = os.path.splitext(image_2_name)[0]
# Load matches
key = '-'.join([image_1_name_no_ext, image_2_name_no_ext])
matches = np.squeeze(matches_dict[key])
# only write when matches are given
if matches.ndim == 2:
f.write(image_1_name + ' ' + image_2_name + '\n')
for _i in range(matches.shape[1]):
f.write(
str(matches[0, _i]) + ' ' + str(matches[1, _i]) + '\n')
f.write('\n')
f.close()
# COLMAP runs -- wrapped in try except to throw errors if subprocess fails
# and then clean up the colmap temp directory
try:
print('COLMAP Feature Import')
cmd = ['colmap', 'feature_importer']
cmd += [
'--database_path',
os.path.join(colmap_output_path, 'databases.db')
]
cmd += ['--image_path', os.path.join(colmap_temp_path, 'images')]
cmd += ['--import_path', os.path.join(colmap_temp_path, 'features')]
colmap_res = subprocess.run(cmd)
if colmap_res.returncode != 0:
raise RuntimeError(' -- COLMAP failed to import features!')
print('COLMAP Match Import')
cmd = ['colmap', 'matches_importer']
cmd += [
'--database_path',
os.path.join(colmap_output_path, 'databases.db')
]
cmd += [
'--match_list_path',
os.path.join(colmap_temp_path, 'matches.txt')
]
cmd += ['--match_type', 'raw']
cmd += ['--SiftMatching.use_gpu', '0']
colmap_res = subprocess.run(cmd)
if colmap_res.returncode != 0:
raise RuntimeError(' -- COLMAP failed to import matches!')
print('COLMAP Mapper')
cmd = ['colmap', 'mapper']
cmd += ['--image_path', os.path.join(colmap_temp_path, 'images')]
cmd += [
'--database_path',
os.path.join(colmap_output_path, 'databases.db')
]
cmd += ['--output_path', colmap_output_path]
cmd += ['--Mapper.min_model_size', str(cfg.colmap_min_model_size)]
colmap_res = subprocess.run(cmd)
if colmap_res.returncode != 0:
raise RuntimeError(' -- COLMAP failed to run mapper!')
# Delete temp directory after working
rmtree(colmap_temp_path)
except Exception as err:
# Remove colmap output path and temp path
rmtree(colmap_temp_path)
rmtree(colmap_output_path)
# Re-throw error
print(err)
raise RuntimeError('Parts of colmap runs returns failed state!')
print('Checking validity of the colmap run just in case')
# Check validity of colmap reconstruction for all of them
is_any_colmap_valid = False
idx_list = [
os.path.join(colmap_output_path, _d)
for _d in os.listdir(colmap_output_path)
if os.path.isdir(os.path.join(colmap_output_path, _d))
]
for idx in idx_list:
colmap_img_file = os.path.join(idx, 'images.bin')
if is_colmap_img_valid(colmap_img_file):
is_any_colmap_valid = True
break
if not is_any_colmap_valid:
print('Error in reading colmap output -- '
'removing colmap output directory')
rmtree(colmap_output_path)
def main(cfg):
'''Main function to compute matches.
Parameters
----------
cfg: Namespace
Configurations for running this part of the code.
'''
# Run colmap
# TODO: would be nice to run this twice if there are errors
run_colmap_for_bag(cfg)
# Evaluate its results
compute_pose_error(cfg)
if __name__ == '__main__':
cfg, unparsed = get_config()
# If we have unparsed arguments, print usage and exit
if len(unparsed) > 0:
print_usage()
exit(1)
main(cfg)